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EXOTIC COHOMOLOGY AND INDEX THEORY 

JOHN ROE 

1. INTRODUCTION 

The main result of this paper is a version of the Atiyah-Singer 
index theorem for Dirac-type operators on (noncompact) complete 
Riemannian manifolds. The statement of the theorem involves a 
novel "cohomology" theory for such manifolds. This theory, called 
exotic cohomology, depends on the structure at infinity of a space; 
more precisely, it depends on the way that large bounded sets fit 
together. For each cohomology class in this theory, we define a 
"higher index" of a Dirac-type operator, enjoying the stability and 
vanishing properties of the usual Atiyah-Singer index; these higher 
indices are analogous to the Novikov higher signatures. Our main 
theorem will compute these higher indices in terms of standard 
topological invariants. Applications of this index theorem include 
a different approach to some of the results of Gromov and Lawson 
[10] on topological obstructions to positive scalar curvature. 

The concept of index that we will use involves the A^-theory 
functors K0 and Kx for operator algebras [3, 14]. Suppose that 
B is an ideal in a unital algebra C, and let T e C be invertible 
modulo B. (In the classical Atiyah-Singer index theorem, one 
takes C to be the bounded operators on the L space of some 
compact manifold, B the compact operators, and T an elliptic 
pseudodifferential operator of order zero.) Then T has an "index" 
in the ^-theory group KQ(B) (in the classical case this is just Z , 
and one recovers the usual Fredholm index). Now let M be a 
complete Riemannian manifold, possibly noncompact. In [18] I 
introduced an algebra %?(M) which is defined as follows: Sf(M) 
consists of all bounded operators A on L2(M) that have a kernel 
representation 

Au(x) = k{x, y)u{y) dy, 
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where the kernel k(x ,y) is smooth on M x M and vanishes 
whenever the distance d(x, y) is greater than some constant de­
pending only on the operator A . One can show, using a variant of 
the construction above, that a Dirac-type operator D on M has 
an index in Ki(^(M)), where i = dim(M) mod 2. The useful­
ness of this construction depends on how well one understands the 
groups Kt(^(M)) ! 

One way to partially understand these groups is to construct 
homomorphisms Kt(Sf{M)) —• C. Such homomorphisms can be 
obtained from the cyclic cohomology theory of A. Connes [4]. This 
theory associates to an algebra such as Sf(M) a series of complex 
vector spaces HCq{S?(M)), and there is a natural pairing (the 
Chern pairing) 

HCq{Sf{M)) <g> K[q]{2T{M)) - C, 

where [q] denotes q mod 2. Thus, we look for cyclic cohomology 
classes for JT(M). 

Such cyclic cohomology classes can be obtained from exotic co­
homology. The exotic cohomology groups HXq(M), which de­
pend on the geometry of M, are constructed in such a way that 
there is a "character" map x ' HXq{M) -• HCq(^(M)). The 
concept of exotic cohomology is motivated by the construction of 
[18]. There it was shown that a partition of the manifold M, that 
is a compact hypersurface whose complement is disconnected, de­
termines in a natural way a 1-dimensional cyclic class for Sf(M). 
It can be shown that HXl(M) is generated in a natural way by 
such partitions, so one can think of exotic cohomology as general­
izing the partition construction to higher codimensions. There is, 
however, a significant difference: in contrast to HXl, the higher 
exotic cohomology groups depend on the metric, and not just on 
the topological, structure of M. For example, one can show that 
HX2(R2) is 1-dimensional, but if M denotes the manifold, diffeo-
morphic to R , obtained by smoothly capping off a semi-infinite 
cylinder, then HX*(M) is trivial. Exotic cohomology is an essen­
tially noncompact theory: every compact manifold has the same 
exotic cohomology as a point. 

Given therefore an operator D of Dirac type on M and an 
exotic class cp in HX* (M) of appropriate parity, one can obtain 
a "real-valued index" (IndD, x[<P]) • Our main theorem will then 
compute this index in topological terms, using the standard index 
class ch{a(D)) — td(TM) e H*{M) associated to D [1,2] and 
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a topological character map c : HX*(M) —• H*(M). At the end 
of this paper we will give an example showing how this result can 
be applied in conjunction with Bochner vanishing arguments to 
obtain results about the impossibility of positive scalar curvature 
metrics on certain manifolds. Further examples will appear in 
[15]. 

2. DEFINITION, BASIC PROPERTIES 

Let M be a complete metric space in which closed bounded 
sets are compact. Let CXq(M) denote the space of all contin­
uous, antisymmetric functions (p : Mq+l -» R which satisfy the 
following support condition: Let A = {(x, . . . , x) : x e M} be 
the multidiagonal in Mq+{, and for R > 0 let Pen(A; R) de­
note the ^-neighborhood of A ; we require that for any R > 0, 
Supp(^) nPen(A; R) be relatively compact in Mq+l. The vector 
spaces CXq(M) then form a cochain complex under the usual 
boundary operator d of Alexander-Spanier cohomology theory 
[21], and we define the exotic cohomology HX*{M) to be the 
cohomology of this complex. 

The idea of relating Alexander-Spanier cohomology to index 
theory was introduced by Connes and Moscovici [5, 6]. Exotic co­
homology leads to a "delocalized" version of their index theorem. 

For example, let M = Rn and define cp as follows: Let a 
be a compactly supported n-form on M with ƒ a = 1, and for 
(x0, . . . , xn) E Mn+l let A(x0, . . . , xn) denote the oriented affine 
«-simplex in M with vertices xQ, . . . , xn ; set 

cp{x0,...,xn)= \ a, 
JGk(x0,...,xn) 

It is then easily checked that cp is an exotic n-cocycle; and it can 
be proved that [<p] in fact generates HX*(M) as a real vector 
space. 

The main computational tool for HX* is a variation of the 
Cech approach to cohomology: Roughly speaking, whereas to com­
pute ordinary cohomology one considers the Cech theory of suc­
cessively finer coverings and passes to a direct limit, to compute 
exotic cohomology one considers the Cech theory of successively 
coarser coverings and passes to an inverse limit. In this way one 
can compute exotic cohomology in many examples, and one can 
prove, for instance, that if the Hausdorff distance dH(M, N) (in 
the sense of Gromov [9]) is finite, then HX*(M) s HX*(N). 
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Exotic cohomology is functorial under proper maps ƒ : M —• N 
that satisfy the condition: For all R > 0 there exists S > 0 such 
that d(x, x) < R => d(f(x), f{x)) < S. For complete Rieman-
nian manifolds this property is implied by uniformly continuity. 

3. CHARACTER MAPS AND INDEX THEORY 

There is a homomorphism c : HX*(M) —• H*(M). If we 
think of the right-hand side of Alexander-Spanier cohomology with 
compact supports, then c[cp] is just the equivalence class of cp 
modulo locally zero cochains. 

Let M be a complete Riemannian manifold, and let $?(M) de­
note the algebra introduced in [18]. Let HC*(3?) denote Connes 
cyclic cohomology of %? [4]. There is a Connes character map 
X : HX*(M) -» HC\$?) defined as follows [5, 6]: For an exotic 
#-cocycle (p, define 

X [ < p ] ( A 0 , . . . , A q ) 

— / / OV-̂ 0 ' -^l)^1 v-̂ l ' X2' 

' ' ' kq\x
q -> -^o^v-^O ' * * * ' Xq' ^X0 ' ' ' ̂ Xq ' 

where the operators Ai G 8? have kernels kt. Although the in­
tegration is taken over the noncompact space M x • • • x M, the 
support conditions on tp and on the fc|. interact to show that the 
integral must converge—the range of integration is contained in 
Supp(ç?) and must also be contained in some bounded neighbor­
hood of the diagonal. 

Now let D be an operator of Dirac type on the complete Rie­
mannian manifold M. Then [16, 17, 18] D has an index Ind(D) 
G K.(%?(M)), where i = dim(Af) mod 2. (Strictly speaking, when 
i is odd we take K_x rather than K{.) Now Connes [4] defines 
a pairing between A^-theory and cyclic cohomology, which we can 
use to pair Ind(Z>) with the Connes character of an exotic coho­
mology class. Our main result is then: 

Theorem. Let [(p]eHXq(M). Then 

(IndD, xM) = aq(c[<p] - ch(a(Z>)) - td(M), [M]), 

where the nonzero constant a depends only on q. 

For q = 1 this index theorem incorporates the results of [18]. 
For q = 0 it is the ordinary Atiyah-Singer index theorem [2]. The 
proof uses some of the remarkable results of Connes and Moscovici 
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[6], specifically their application to cyclic cohomology of Getzler's 
[8] asymptotic pseudodifferential calculus and the resulting local­
ized index theorem. 

4. CORONA SPACE 

Let M be a complete Riemannian manifold. In [12], Higson 
introduced a compactification M of M, defined as the maximal 
ideal space of the commutative C*-algebra generated by smooth 
bounded functions f on M such that Vƒ —• 0 at infinity. Hig-
son's compactification is related to, but is somewhat larger than, 
the Freudenthal compactification [7]. Let vM = ~M\M be the 
"corona" of M. Higson shows that there is a natural map Kt(3?) 
—> Ki±x(vM), where the left-hand side is the A^-theory of the 
C*-algebraic closure Sf of %? and the right-hand side is the K-
homology of the space vM. Dually, I prove that there is a "trans­
gressed Chern character" Teh : Kx(yM) -+ i/Xeven(M), K°(uM) 
—• HXodd(M). These constructions are compatible in the sense 
that if Ind(D) e Kt{^), y/ e Kl±\vM), then 

(ft(Ind(Z>)), y) = (Ind(D), Z[Tch(^)]), 

where b : Kt(Mr) -+ Kt{W) -+ Ki±l(uM) is Higson's map. The 

relevance of this is that if D has an inverse bounded on L2(M), 
then one can show that Ind(D) vanishes in KJ^Sf), although not 
necessarily in K^ {%?). Therefore, if D has a bounded inverse, 
(Ind(JD), x[<PÏ) = 0 for any <p e Im(Tch®R). 

Example. Let us use these techniques to reprove the famous result 
of Schoen and Yau [19, 20], and of Gromov and Lawson [10, 
11] that the torus T" has no metric of positive scalar curvature. 
Let M = Rn , (p e HXn{M) the class defined in §1, and D the 
classical Dirac operator. Suppose the torus admitted a metric of 
positive scalar curvature. This would then lift to a metric on M, 
uniformly equivalent to the standard one—and hence having the 
same exotic cohomology. The index theorem of §3 shows that 
(Ind(Z)), xM) ^ 0 ; but it can be shown that [<p] e Im(Tch<g>R), 
and D has a bounded inverse by the Lichnerowicz-Weitzenbock 
formula [13], so by the results of §4, (Ind(Z)), x[<P]) = 0- This 
contradiction establishes the result. 

Note. These results were presented at a conference held at Boulder, 
Colorado, in April 1989. I am grateful to all the participants in 
the conference, and especially to Nigel Higson and Steven Hurder, 
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for their helpful questions and remarks. Full details will appear 
elsewhere [15]. 
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