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DEFORMATION RIGIDITY FOR SUBGROUPS OF SL(n, Z) 
ACTING ON THE n-TORUS 

STEVEN HURDER 

ABSTRACT. We announce and give a sketch of the proof of the 
result: 

Theorem 1. For n > 3 , the standard action of SL(n, Z) on 
Tn is smoothly and analytically rigid under C -deformations. 

Several related results concerning rigidity of actions of sub­
groups of SL(n, Z) on Tn that follow from our method are 
also discussed. 

§ 1. RIGIDITY THEOREM 

The natural action of the determinant-one, integer n x «-matri­
ces SL(n,Z) on Rn preserves the integer lattice Zn ; hence for 
each subgroup T c SL(n, Z) there is an induced standard action 
on the quotient «-torus, <p : T x Tn —• Tn . A basic problem is to 
understand the smooth actions near to such a standard action in 
terms of their geometry and dynamics (cf. [8, 19]). In this note 
we announce results which classify 1-parameter deformations of 
standard actions. 

A Ck -deformation of (p is a 1-parameter family of C°°-actions 
q>t : T x T" -* Tn, 0 < t < 1 such that y0 = (p and for each 
y e T, the C°°-maps <pt(y) depend Ck on the parameter t. 
That is, cpt{y) is a C^-path in the Frechet space Diff°°(Trt). A 
Ck -deformation is trivial if it is implemented by a Ck -family of 
inner automorphisms of Diff°°(Tn). That is, there exists a 1-
parameter family of C^-diffeomorphisms Ht\T

n —• Tn which 
depends C on the parameter, and for all y e T satisfies 

(1) Kl ° 9t(v) o Ht = q>{y) ; 0 < t < 1. 
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We say that (pt is locally trivial if Ht as above exists for 0 < t < e 
for some e > 0. The action <p is smoothly C -{locally) rigid if 
every C -deformation is (locally) trivial. When the deformation 
cpt consists of real analytic maps, then we can require that each 
Ht be real analytic, which leads to the corresponding notion of 

analytically C -{locally) rigid. 

Theorem 1. Let Y c SL{n, Z) be a subgroup of finite index with 
n > 3. Then the standard action of Y on Tn is smoothly and 
analytically Cl-rigid, and C°-locally rigid. 

The conclusion of the theorem is false for n = 2 : There exists 
finite-index subgroups of SX (2, Z) freely-generated by two hyper­
bolic elements, and their action on T2 can be smoothly deformed 
using the examples of (§24, [1]) to a topologically equivalent ac­
tion for which the generators are not smoothly conjugate to their 
standard action. (The obstruction is that the stable and unstable 
foliations for the deformed actions are not even C 2 , hence are 
not conjugate to linear foliations [1, 9].) 

The conclusion of the theorem can be reinterpreted as stating 
that every C^-path, starting at the standard action, in the space of 
representations <9?{Y, G) for G = Diff {Tn) with r = œ or co, 
is obtained by conjugating <p with a path in G starting from the 
identity. 

The tangent space of R(T, G) at (p maps to the space of in­
finitesimal deformations of (p , which are identified with the first 
cohomology group HX{Y\ Vect°°(Tw)). Here, V e c t 0 0 ^ ) denotes 
the Frechet T-module of smooth vector fields on Tn. J. Lewis 
proved in his thesis [10] that for n > 7 and T of finite-index, 
Hl{r]Vect°°{Tn)) is zero, so that the standard action is infinites-
imally rigid. It is unknown whether this group must vanish for 
nonalgebraic actions of T, especially those which do not preserve 
a smooth volume form on T" . 

The proof of Theorem 1 has two main steps, which are de­
scribed in more detail in §§2,3 below. We first prove topological 
rigidity; that is, we show there exists a homeomorphism Ht of Tn 

satisfying (1) above. This result holds in much greater generality 
than T of finite index—see Theorem 2 below. We assume the 
existence of an element y G Y which acts on Tn as an Anosov 
diffeomorphism; then by the unique structural stability for toral 
Anosov diffeomorphisms [1, 5, 17] there is a unique candidate 
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for Ht. Our main idea is to investigate the periodic points for 
cp(y) that are also periodic under the full group action tp(T). We 
combine results of Margulis [15] and Stowe [18] to prove that the 
T-periodic points are stable under deformation, from which we 
easily obtain our conclusion (1). 

The second step is to show that a topological conjugacy must be 
as regular as the actions—either smooth or analytic. This is much 
more delicate and technical, and essentially requires T to be of fi­
nite index, but applies to perturbations as well as to deformations. 
The methods are based on recent results in smooth hyperbolic dy­
namical systems [9, 12-14]. Let us mention that the foundation 
of the regularity theory for conjugacies is the Livsic theorem [11], 
which states that the cohomology class of an additive cocycle over 
an Anosov system is determined by its values at periodic orbits. 
Superrigidity of lattices in SL(n, R) for n > 3 implies rigidity 
of the expansion coefficients of T at periodic orbits, which begins 
the proof of regularity of Ht. Thus, in both steps it is key to con­
centrate on the behavior of periodic orbits, which illustrates the 
general principle that the periodic orbits for hyperbolic dynamical 
systems control the global dynamics. 

A C -perturbation of (p is an action ^ i T x T ^ T " so that 
for a given set of generators {yx, . . . , yd) of T, the diffeomor-
phisms (p(yt) and <px(yt) are C -close in the uniform topology. It 
remains a basic open problem to show that every C1-perturbation 
of a standard action is trivial. Equivalently, does the adjoint ac­
tion of G = Diff°°(T") on 3HJT, G) have open orbit at (p in the 
C -topology? By Theorem 3 below, it would suffice to show topo­
logical stability; that is, to prove that the orbit of Homeo(T") at 
(p intersects 31 (T, G) in an open set. 

§2. TOPOLOGICAL STABILITY 

Let p : r x l - ^ l bea C°° -action of a finitely-generated group 
T on a compact manifold X of dimension n . The periodic points 
A c X of (p are those x e X whose ç?(r)-orbit is a finite set. 
An element y e T is said to be hyperbolic if <p(y) is an Anosov 
diffeomorphism [1] of X. For example, if T c SL(n, Z) and 
X = Tn , then y is hyperbolic if it has no eigenvalue of modulus 
1. Moreover, if F contains a hyperbolic element, then the (p-
periodic points A are exactly the rational points (Q/Z)" . 
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For x e A, let Tx denote the stabilizer of the orbit of x and 
px'Tx -> GL(TXX) the isotropy linear representation. We say 
that an irreducible representation p : F —• GL(R ) is noncompact 
if the algebraic hull H of p(T) is a noncompact Lie group. More 
generally, if p is reducible then for each nontrivial invariant sub-
space E c R the restricted action pE of T on E has noncom­
pact algebraic hull. The action (p is strongly infinitesimally rigid at 
x e A if the representation px satisfies the vanishing cohomology 
condition: 

(2) For all noncompact representations p: Tx —• 
GL(k, R), the first cohomology group with coef­
ficients in the p-module R , Hl(Tx;R ) , van­
ishes. 

Note that by a remarkable result of Margulis [15], condition (2) 
holds for lattices in SL(n, R) for n > 3 , as well as for many 
other lattices in higher rank semisimple Lie groups. 

Theorem 2. Let (p:F x X -+ X be a smooth action of the finitely-
generated group T satisfying: 

(a) (p is strongly infinitesimally rigid at each x e A, 
(b) A is dense in X, 
(c) there exists y0 e T hyperbolic. 

Then for each C°-deformation <pt ofcp, there exists e > 0 and a 
continuous family of homeomorphisms Ht of X defined for 0 < 
t < e conjugating the action <pt to (p . 

Sketch of proof. Define a sequence of normal congruence sub­
groups T^j c Tp c r for p > 1 of finite index with f]T — I. 
For example, let T be the stabilizer subgroup for all x e A with 
orbit length < p. Or, for T c SL(n, Z) , we can let Tp be the 
matrices congruent to I mod (p\). Let A^ be the fixed-point set 
of <p(r ) . Clearly, each Ap c Periodic(^(y0)). Let e > 0 be such 
that ç>t(y0) is Anosov for 0 < t < e and Ht be the unique con­
tinuous family of homeomorphisms conjugating (pt(y0) to <p(y0) 
for 0 < t < e with H0 = Id (cf. [1, 17]). For each x e A set 
xt = Ht(x), which will be an isolated fixed-point for some power 
(pt{y™). The fundamental observation is then: 

Lemma 2.1. x, w tf« isolated fixed-point for <pt(Tp) for 0 < t < e. 

Proof. The representation /?x of Fp at x E Ap satisfies Stowe's 
criteria [18] for unique local stability of the fixed-point of Tp near 
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x, so there is a unique fixed-point yt for <pt(Tp) near x for 
t small. For m ^ 0 such that y™ e Tp, local uniqueness of xt 

implies that yt = xt. Moreover, by condition (2) the hypotheses of 
Stowe's theorem are closed in the parameter t, so via a maximum 
argument xt must be stable for all t < e. D 

The lemma implies that Ht conjugates (pt(T) to (p(Y) on the 
dense set A. By continuity of the actions, the conjugacy also holds 
for the closure I of A. D 

If T c SL(n, Z) and the deformation cpt is C1 in the param­
eter, then with more work one can show that <pt(y0) is Anosov for 
all 0 < t < 1. Hence Ht exists for all 0 < t < 1 also, and we can 
take e = 1 above. 

§3. DlFFERENTIABLE CONJUGACY 

For r ç SL(n, Z) of finite index, the topological conjugacies 
exhibited in §2 are in fact smooth (or analytic) if (pt is a smooth 
(or analytic) action, with C1-dependence on the parameter for a 
C1-deformation. The proof of this is based on the cohomological 
properties of T and recent advances in the theory smooth Anosov 
systems [9, 11-14]. 

Theorem 3. Let T ç SL(n, Z) be of finite-index with n > 3. 
Suppose that (px is a smooth (analytic) action that is topologically 
conjugate to the standard action of Y on Tn, and C1 close to 
it. Then the conjugacy is smooth (analytic). Moreover, if a 1-
parameter C° (C1 ydeformation of the standard action is given, 
then the smooth conjugacy depends C° (C1) on the parameter. 
Sketch of proof. T satisfies condition (2), so that for each p G A 
we have H1 (r ; sl(n, R)) = 0. (For n > 5, this vanishing follows 
also by the previous results of Borel [2, 3].) Consequently, 

Proposition 3.1. For each x e Ap the infinitesimal representation 
of Fp at x is stable under C°-deformation, n 

The corollary of the proposition we need is that for any semi-
simple element y G T, with no eigenvalues of modulus one, the 
Anosov diffeomorphisms (pt(y) have constant exponents in t at all 
of their periodic orbits, and this condition is closed in the param­
eter. From the results of [16], we can choose a maximal Abelian 
semisimple subgroup Tsa c T that is free of rank n - 1. A si­
multaneous diagonalization of this subgroup yields n transverse, 
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one-dimensional foliations of T" which are each invariant under 
the action of Tsa . (We say that the action of T on Tn is trellised.) 
By the topological stability of the action, these foliations persist 
under the deformation, and are denoted by F-(t) for 1 < i < n . 

Proposition 3.2. For each i and t, the individual leaves of the 
foliation Ft(t) are C°°-immersed submanifolds of Tn . 
Proof. For each i, there exists an element y. e Tsa such that F.(t) 
is the contracting foliation of the smooth Anosov map (pt{yt). The 
conclusion then follows from the theory of Hirsch, Pugh, and Shub 
[6]. D 

It follows from Proposition 3.2 that each Ht maps F.(0) to 
Ft(t), and conjugates two smooth Anosov diffeomorphisms for 
which these are the stable foliations. Therefore, by methods as in 
[12], Ht is smooth when restricted to the one-dimensional leaves 
of Ft(t) for each i and t, so by the natural extension of the 
Regularity Theorem 1.3 of [9], the map Ht is itself smooth. 

It remains to show that the maps Ht depend C on the pa­
rameter. For k = 0, this is a consequence of the continuous 
dependence of the C°° -immersed stable manifolds of an Anosov 
diffeomorphism of the parameter. For k = 1, we remark that the 
Anosov diffeomorphisms chosen in the proof of Proposition 3.2 
will have greater contraction exponent than any expansion expo­
nent, as they preserve a smooth volume form by the stability of the 
exponents. Thus, the stable foliations are defined as C1-structures 
via a contraction principle (cf. [9, 14]), which also implies that the 
conjugacy will depend at least C1 on the data. 

Details of the above proofs will appear in [7]. In addition, fur­
ther applications to the rigidity of other group actions (cf. [4]) are 
discussed. 
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