
BOOK REVIEWS 183 

6. J. M. Ghidaglia and J. C. Saut (eds.), Equations aux dérivées partielles non 
linéaires dissipâtives et systèmes dynamiques, Hermann, Paris, 1988. 

7. J. K. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys 
and Monographs n° 25, Amer. Math. Soc, Providence, R.I., 1988. 

8. J. K. Hale, L. Magalhâes and W. Oliva, An introduction to infinite dimensional 
dynamical systems, Applied Math. Sciences, vol. 47, Springer-Verlag, Berlin 
and New York, 1984. 

9. J. K. Hale and G. Raugel, Lower semicontinuity of the attractor for gradient 
systems, Annali di Mat. Pura e Applicata (1989). 

10. D. Henry, Some infinite-dimensional Morse-Smale systems defined by para­
bolic partial differential equations, J. Differential Equations 59 (1985), 165-
205. 

11. O. A. Ladyzhenskaya, A dynamical system generated by the Navier-Stokes 
equatons, Zapiski Nauk. Sem. Leningrad Otd. Math. Instituta Steklova 27 
(1972), 91-115. 

12. , Dynamical system generated by the Navier-Stokes equations, Soviet 
Physics Dokl. 17 (1973), 647-649. 

13. N. Levinson, Transformation theory of nonlinear differential equations of the 
second order, Ann. of Math. (2) 45 (1944), 724-737. 

14. J. Mallet-Paret, Negatively invariant sets of compact maps and an extension 
of a theorem of Cartwright, J. Differential Equations 22 (1976), 331-348. 

15. J. Mallet-Paret and G. Sell, Inertial manifolds for reaction-diffusion equations 
in higher space dimensions, J. Amer. Math. Soc. 1 (1988), 805-866. 

16. R. Mané, On the dimension of the compact invariant sets of certain nonlinear 
maps, Lecture Notes in Math., vol. 898, Springer-Verlag, Berlin and New 
York, 1981, pp. 230-242. 

17. V. Pliss, Nonlocal problems in the theory of oscillations, Academic Press, New 
York, 1966. 

18. R. Temam, Infinite dimensional dynamical systems in mechanics and physics, 
Springer-Verlag, Berlin and New York, 1988. 

GENEVIÈVE RAUGEL 
UNIVERSITÉ DE PARIS-SUD 

ORSAY, FRANCE 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 22, Number l, January 1990 
© 1990 American Mathematical Society 
0273-0979/90 $1.00+ $.25 per page 

Real reductive groups. I, by Nolan R. Wallach. Academic Press, 
Pure and Applied Mathematics, San Diego, 1988, xix + 412 
pp., $59.95. ISBN 0-12-732960-9 

The subject matter of Real reductive groups! is the harmonic 
analysis and representation theory of real reductive Lie groups. 
This book lays the groundwork for an eventual Part II which will 
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culminate with Harish-Chandra's proof of the explicit Plancherel 
formula on any real reductive Lie group. As a member of the 
new generation of representation theorists, I am somewhat embar­
rassed to admit my ignorance of many details in Harish-Chandra's 
pioneering program; the reader is directed to the essays of Howe, 
Varadarajan and Wallach in [2] for accounts of Harish-Chandra's 
work. Instead, I will explain to the interested reader just what "har­
monic analysis and representation theory of real reductive groups" 
means in the context of Wallach's book. 

WHAT IS A REAL REDUCTIVE GROUP? 

We begin with an exercise to convince the reader that he is 
already well acquainted with the notion of a real reductive group, 
at least in spirit, if not in name. The exercise is this: Compile 
a list of groups which are simultaneously smooth manifolds (so-
called Lie groups). The real numbers R, the complex numbers C, 
R" and Cn fit into this list; as well as the n-torus (S1 x • • • x S{). 
The matrix groups provide an abundant source of noncommutative 
examples. The groups, GlnR (nxn real invertible matrices), SlnR 
(the determinant= 1 subgroup of GlnR), or the invariance group of 
a nondegenerate form are noncommutative Lie groups which arise 
in any undergraduate linear algebra course. More generally, any 
topologically closed subgroup G of GlnF (F = R or C) which is 
closed under the operation of conjugate transpose is of the desired 
type and we take this as the definition of a real reductive group G. 
These are the basic objects of study in Wallach's book. 

One might ask if every matrix group is a real reductive group. 
The answer is no; for instance, {g e SlnR : g is upper triangular} 
is not a real reductive group, rather a solvable group. The Levi-
Mat cev Theorem insures that every smooth group of matrices can 
be written as a semidirect product of a solvable group and a real 
reductive group. 

WHERE THE SUBJECT OF THE BOOK COMES FROM 

We begin with Fourier analysis on the unit circle S{. Recall 
the elementary exponentials yn(6) = exp( in 6) on Sl, where / = 
(-1)1 /2 and n e Z . Given a smooth function ƒ on S{, we define 
the Fourier transform 6V (ƒ) = fa f(d)y(6)dd. Then Q can 
be viewed as a continuous linear functional (a distribution) on 
C°°(Sl). Following the viewpoint of Harish-Chandra [1], we will 
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view the process of writing the Dirac distribution S(ô(f) = f (e)) 
as a "linear combination of Q , n e Z " as the explicit Plancherel 

problem for S{. In our setting, the solution to this problem is ô — 
^2neZ@y , which amounts to the equality of ƒ with its Fourier 
series at the identity. 

Suppose we replace Sl by a real reductive group G and try 
to carry through the above discussion. We begin by finding an 
analogue of the Fourier transform. Notice that % = {yn'- n e 
Z} exhausts the set of continuous group homomorphisms of Sl 

into Sl. For our general G, one might replace i? by the set 
of continuous homomorphisms of G into Sl, denoted Gp and 
referred to as the Pontryagin dual of G. This approach succeeds 
when G is commutative; in fact, this will work for any locally 
compact commutative topological group. This success is due, in 
part, to the fact that there are enough characters to separate points. 
However, once we move into the noncommutative setting it may 
well happen that Gp = {e} . 

Altering our viewpoint, we refer to a continuous group homo-
morphism n from G into %f(Hn) = unitary operators on the 
Hubert space Hn as a unitary representation of G. In particu­
lar, n(g) is a unitary operator on Hn for every g e G. We call 
Hn the representation space of n and a subspace S ç Hn is called 
n-invariant if n(g)S ç S, for all g e G. Those n for which Hn 

admits no closed ^-invariant subspaces other than 0 and Hn are 
called irreducible unitary representations and we use the notation 
Gu for the set of all such representations. As evidence that we are 
proceeding along the correct lines, the Gelfand-Raikov Theorem 
tells us that there are sufficiently many irreducible unitary repre­
sentations to separate points. Additionally, in the commutative 
case, any x £ G can be viewed as a one dimensional irreducible 
unitary representation / : G —• 2^(C), acting by multiplication 
and this yields a natural bijection Gp = Gu. 

What is the price we have paid by replacing Gp by Gu ? This 
can be answered in many ways, but the bottom line is that the 
Hubert spaces Hn associated to n e Gu may be infinite dimen­
sional. Nevertheless, ignoring this point, we can still mimic the 
prior definitions and set n(ƒ) = fG f(g)n(g) dg, for smooth com­
pactly supported functions ƒ , with n eGu and dg a fixed Haar 
measure on G. With some care and work, we find that n( f) de­
fines a trace class bounded operator on Hn and we obtain a com­
plex number by setting the Fourier transform of n at ƒ equal to 
®n(f) = trace fG f(g)n(g)dg. In particular, 6^ can be viewed 
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as a distribution on G. Following [1], we can now state 

(1) Explicit Plancherel problem for G. Write the Dirac 
distribution (ô(f) = f (e)) as an explicit "linear 
combination of Sn 's, with n eGu" 

PRIMARY GOAL OF THE BOOK 

We take the solution of the explicit Plancherel problem as our 
guiding light. However, the above discussion suggests that a foray 
into the representation theory of a real reductive group will be 
necessary. For starters, it would seem we will need to have in 
hand a parametrization of Gu if there is any hope of explicitly 
solving (1). To see what is at stake here, an abstract (as opposed to 
explicit) Plancherel Formula asserts that f(e) - Jp 6 (ƒ) dfi(n), 

u 

where d/u is the Plancherel measure on the set Gu . For example, 
if G = Sl, then dfi is just counting measure on Z = Gu and 
this integral becomes a Fourier series. The desire for explicitness 
in (1) amounts to a good description of the Plancherel measure in 
terms of data intrinsically attached to G. 

In large part, Real reductive groups. I lays out a first approxima­
tion to the parametrization of Gu . This classification appeared in 
the 1970s and parametrizes the somewhat larger class of irreducible 
admissible representations, denoted Ga. In the definition of an 
admissible representation (n9Hn) we require only that n(g) be a 
linear automorphism of a Hubert space Hn , then take as a defin­
ing axiom a key property exhibited by any n eGu: n restricted to 
a maximal compact subgroup K of G decomposes into a Hubert 
space direct sum of irreducible representations of K and each class 
of irreducible AT-representation occurs at most finitely often in this 
sum. The Langlands classification will parametrize Ga in terms of 
the irreducible tempered representations (defined below) of reduc­
tive subgroups L of G, while the Knapp-Zuckerman classification 
then provides a list of the irreducible tempered representations of 
each such L. In the end, the support of the Plancherel measure 
lies inside the set Gt of irreducible tempered representations of 
G, which in turn lies inside Gu . See Figure 1. 

BUILDING REPRESENTATIONS 

We need two fundamental representation theoretic construc­
tions for building new representations from old. First, a process 
of going from admissible representations of reductive subgroups 
L of G to admissible representations of G, a technique referred 
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FIGURE 1 

to as induction. Secondly, a "reverse" process of going from ad­
missible representations of G to admissible representations of re­
ductive subgroups L of G, a procedure we shall term reduction. 
Each technique is used in the proof of the classification. 

Having fixed our ambient real reductive group G, we need to 
describe a canonical family of reductive subgroups L of G. The 
idea is best illustrated by looking at the case when G = SlnR. In 
this case, we define Pm to be the subgroup of upper triangular 
matrices. Any subgroup P of G (including G itself) containing 
Pm will be called a parabolic subgroup. In our special case, a typical 
P will consist of "block" upper triangular matrices; for example, 
if n = 3 , we can schematically describe four parabolic subgroups 
as 

( * * * \ / * * * \ / * * * \ / * * * \ 
* * * ] [ 0 * * | 1 * * * 1 I 0 * * I 
* * *y \0 0 * j \0 0 *y \0 * *y 

In general, parabolic subgroups are not reductive, but we can al­
ways decompose P as a semidirect product P = LN, where N 
is a normal nilpotent subgroup of P and L is a reductive sub­
group of G. The subgroups L arising from parabolic subgroups 
of G will be crucial in all that follows and we refer to them as 
Levi subgroups. 

Given an admissible representation (r, Hx) of a Levi subgroup 
L , we extend T to a representation of P = LN, by letting x{n) 
be the identity operator for every n G N. Forming the function 
space 

indp(r) = {ƒ : G —• H \ ƒ is continuous and f(gp) 
def 
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we then define 7rreg on ind^r) via [nTeg(x)f]{g) = f(x l g), 
x, g e G. By completing indp(r) with respect to a particular 
norm we arrive at Indp(r) , referred to as a P-induced representa­
tion of G. AU such induced representations are admissible repre­
sentations of G and this procedure exhibits the process of induc­
tion central to the Langlands classification. In fact, one can view 
this induction construction as an old friend from vector bundle the­
ory: If (T, HX) is a finite dimensional representation of a parabolic 
subgroup P, then one can associate a homogeneous vector bundle 
2^ over the manifold G/P, having fibre Hx at the identity coset. 
The space ind/,(r) describes the continuous sections of this vector 
bundle. 

Before describing our reduction procedure, we need a funda­
mental idea of Harish-Chandra. Namely, that we replace an ad­
missible representation n on the Hilbert space Hx by the subspace 
Hn K ç Hn consisting of the algebraic (as opposed to Hilbert 
space) direct sum of irreducible representations of K occurring 
in the restriction of n to a maximal compact subgroup K of 
G. The resulting vector space Hn K , stripped of its topology, is 
called the underlying Harish-Chandra module of n ; the study of 
such modules is initiated in Chapter 3 of the book. Of course, 
this process of passing from n to Hn K comes at a price: Harish-
Chandra modules are not representation spaces for the group G. 
However, the price is not too high: The subspace Hn K is dense in 
Hn , simultaneously carrying a representation of the complexified 
Lie algebra g of C and our maximal compact group K. More­
over, the notions of irreducibility of n and irreducibility of Hn K 

are equivalent and nothing will be lost if we proceed to classify the 
irreducible Harish-Chandra modules. 

To describe our reduction technique, let n denote the com­
plexified Lie algebra of the Lie group N. We consider the func­
tor which assigns to an admissible representation n of G the 
space H0(n9 n) = Hn K/(n.Hn K), referred to as the space of 

n-coinvariants in n. This defines a right exact covariant func­
tor from the category %fêG of Harish-Chandra modules for G 
into the category of complex vector spaces, so we may study the 
higher order derived functors applied to n, which are referred 
to as the n-homology groups with coefficients in n and denoted 
Hk(n9 n), k > 0. Each of the vector spaces Hk(n, n) will be 
the Harish-Chandra module of an admissible (not necessarily ir­
reducible) representation of L ; this is the reduction technique 
needed in the sequel. 
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THE SUBREPRESENTATION THEOREM 

One of the first results giving us some control over the set of 
irreducible admissible representations of G is Harish-Chandra's 
Subquotient Theorem (Chapter 3). This result asserts that to each 
irreducible admissible representation n of G, we may associate 
a finite-dimensional representation rn of the Levi subgroup Lm 

so that n occurs as a subquotient of IndPm(Tw) ; this means there 
exist closed 7r-invariant subspaces S ç S' ç Indp (T ) so that 

m 

S'/S = Hn . The numerous consequences of this result include (in 
Wallach's treatment) Casselman's subrepresentation theorem: 

(2) Theorem. Each irreducible admissible representa­
tion n is a closed n-invariant subspace of some 

m 

In fact, every occurrence of an irreducible n as a subrepresen­
tation of a P-induced representation Indp(T) is determined by 
the Harish-Chandra module H0(n, n) for the Levi subgroup L . 
To see this, one introduces a suitable notion of morphism in cat­
egories of Harish-Chandra modules and proves for an admissible 
representation n of G: 

(3) Frobenius reciprocity. H o m ^ (Hn K, Indp(T)^) 

= H o m^rL(#o(n> *) > HT,KM) °-

This provides a fundamental connection between our induction 
and reduction techniques. Also, it should be noted that if n is 
irreducible, then any nonzero element of the left-hand side of (3) 
is necessarily injective. 

The proof of Frobenius reciprocity is surprisingly elementary 
and given this n-homological reformulation, Casselman's subrep­
resentation theorem together with the other embedding statements 
follow from 

(4) Theorem. If neGa, then H0(nm 9n)^0. 

In addition, as will soon become apparent, the proof of Lang-
land's classification depends on a careful study of H0(nm, ri). 
Ultimately, we can approach (4) from three different directions: 
algebraically, via matrix coefficients, or using the Fourier trans­
form 6 ^ . By the end of the review, we will have touched on 
each of these viewpoints, but for now we will begin with the al­
gebraic perspective. Recalling the Levi subgroup Lm associated 
to Pm , we can further decompose Lm = MmAm , with Mm com­
pact and A diffeomorphic to a finite product of copies of the 
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multiplicative group of positive real numbers Rx ; we can analo­
gously decompose P = MAN (but M won't necessarily be com­
pact). By restriction, viewing H0(nm, n) as a finite-dimensional 
representation Q of the commutative group Am , there must exist 
Q-invariant subspaces 

0 = SQ C Sx C S2 C • • • c 5, = HQ(nm, TT) 

such that each subquotient SJ/SJ_{ is a one-dimensional character 
îz(iogû) ^ fl E ^ ^ ^ in the dual space am of the complexified Lie 

algebra of Am . This allows us to define 

j/hom(7r) = {v : e"( 0%a) arises as a subquotient Sj/Sj_l of Q}, 

referred to as homology exponents of n . 
The a priori algebraic problem of showing that £?hom(n) ¥" 0 

is amazingly deep. One argument, the original approach of Cas-
selman, relies on an analysis of matrix coefficients (the topic of 
Chapter 4) associated to the Harish-Chandra module of n . A ma­
trix coefficient fv œ is a real analytic function on G built from 
a vector v in Hn K and a A>finite vector œ in the algebraic 
dual space of Hn K , via the rule fVy0)(g) = (co, n(g)v), g eG. 
Harish-Chandra's theory of the constant term leads one to analyze 
the growth behavior of matrix coefficients on G. Recalling that 
Am = (Rx x • • • x Rx ) , we define 4~ as the image under the ex­
ponential map of a certain open convex cone (a~ 0) ç am 0 ; the 
situation for S73R is indicated in Figure 2. 

I 
I 

\ ! - ' 

FIGURE 2 

One is ultimately reduced to the growth analysis of matrix co­
efficients on closure (^4~). Matrix coefficients satisfy differential 
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equations, arising from the action of certain left invariant differen­
tial operators on G on the matrix coefficients. Solving these equa­
tions, using something not unlike the classical Frobenius method 
for ordinary differential equations with a regular singular point, 
we find that fv œ has an expansion in exponentials of the form 
eH\oga) ? for a G ^4- 5 v e ( a j * T h i s allows us to define the 
asymptotic exponents of n : 

JKsy(7r) ~ iv : e arises in the expansion of some fv w for 71}. 

A careful definition of a~ 0 produces a natural order relation < 
on (om)*. The leading asymptotic exponents and the leading ho­
mology exponents are then defined by 

{minimal elements of s/ (n) 

with respect to the order < } , and 

{minimal elements of ^om(7r) 
with respect to the order < } , 

respectively. Casselman's proof of (4) proceeds by showing: 0 ^ 

•<(*)£ J O O . 
Although this discussion accurately describes the history of (4), 

this is not the approach in Real reductive groups!. Rather, Wallach 
gives an ingenious inductive argument, depending upon Harish-
Chandra's subquotient theorem plus some rough asymptotic es­
timates for certain special induced representations (the spherical 
principal series). This allows a proof of the subrepresentation the­
orem prior to a full blown discussion of matrix coefficients. Also, 
Beilinson and Bernstein have given a geometric proof of (4) using 
the theory of D~modules. 

THE LANGLANDS CLASSIFICATION 

Fundamentally, the idea behind the classification is to induc­
tively parametrize the irreducible admissible representations of a 
real reductive group G in terms of irreducible tempered repre­
sentations of Levi subgroups L of G. We have seen that each 
irreducible admissible representation n occurs as a subrepresen­
tation of some Pm -induced representation. With this in mind, a 
first approach toward the classification might be to consider the 
map 

1// : Ga —• 9ö
m - {Pm - induced representations of G}, 

•«Coo = 

O) = 
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y/(n) denoting the Pm-induced representations into which we can 
embed a given irreducible representation 7r, using ^om(7t) and 
(3). There are two immediate problems with this approach. First 
of all, we may have # |^o m (^) | > 1, so that y/ need not be sin­
gle valued. Secondly, we may well have £^om(n) — ^ ( T T ' ) , so 
that y/ need not be one to one. However, if we could make y/ 
injective and single valued by intersecting its image with some dis­
tinguished subset &>'m ç <Pm , then y/ would provide a classifying 
scheme; this works for complex reductive groups (like SlnC), but 
the approach fails, in general. Nevertheless, we take these ideas 
as a model for the eventual classification and begin with a bit of 
philosophy: 

(5) The classification is a scheme to list representations 
according to the growth of their matrix coefficients, 
the idea begin that tempered representations have 
nicest growth. 

The Langlands classification (Chapter 5) will organize nontem-
pered representations according to growth by bringing various 
parabolic subgroups P ^ Pm into the picture. The idea is to 
attach to each irreducible admissible representation (n, Hn) a set 
of data which will ultimately classify n, modulo the classification 
of irreducible tempered representations. This data, referred to as 
the Langlands data for n, is a triple 

3a/ia{n) = (ƒ> , <r , v\, where P„ = MA„N 

is a parabolic subgroup of G, an is an irreducible tempered repre­
sentation of Mn and ev% is a "negative" character on An , mean­
ing that vn lies in a "negative cone" (a* 0)~ analogous to the 
convex cone (om 0)~ . Milicic's refinement of Langlands origi­
nal argument shows that % is the unique irreducible subrepre-
sentation of Indp (a (8) ev%) and n occurs as a subquotient of 

Indp (cr ® ev*) exactly once. Conversely, given a triple <S? = 
(P, a, v) as above, called a collection of Langlands data for G, 
then Indp(t7(8)^l/) contains a unique irreducible subrepresentation 
%%, and Sa/ipijig) = Sf. In summary 

(6) Langlands classification. There is a one-to-one cor­
respondence between Ga and the the set of all Lang­
lands data for G. 

The obvious question is how to associate Sa/tp(n) — (Pn, an, vn) 
to a given irreducible admissible representation % of G and the 
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answer will simultaneously define the notion of a tempered repre­
sentation. Cheating slightly (and not for the first time), we view 
j / hom( 7 r ) a S a S u b s e t 0 f (am,o)* • G i v e n a n y V e j / hom( 7 r ) > l e t V# 

denote the element of closure (a^ 0)~ which is nearest v ; such 
a point will be uniquely defined, since closure (a*m 0)~ is a closed 
convex set in the Hilbert space a*m 0 (under the Killing form inner 
product). The Langlands parameter X(n) of n is defined to be 
a maximal length element of the set {i/# : v e ^h0m(^)} • Three 
things can happen, as described below and illustrated in Figure 3. 

Case 1. X{n) = 0. In this case, all vectors in s^om(n) lie inside 
the (closed) tempered cone %?(G). By definition, any such n is 
called a tempered representation of G. In this case, the Langlands 
data of n is (G, 7r, 0). 

Case 2. X(n) e (a*m 0)~ . In this case, some v e ^ m ( ^ ) lies 

in the interior of closure (a*m 0)~ and we define X(n) = v . The 

Langlands data of % is (Pm, am, v), where am is determined by 

a subquotient of HQ(nm, n) of Am representation type ev . 

Case 3. X(n) e boundary[closure (a^ 0 ) ~ ] . In this case, one needs 
to utilize the structure theory of real reductive groups to see that 
the parameter X(n) determines a particular parabolic subgroup 
Pn = MnAnNn containing Pm and the parameter X(n) will lie 
inside (a* 0)~ . The Langlands data for n will be (Pn, an, vn), 
where X(n) = vn and an is an irreducible subquotient of H0(nK, n) 
of An representation type ev*. The proof that this is indeed a col­
lection of Langlands data involves showing that an is tempered for 
Mn, which amounts to showing that the exponents of an lie in 
the tempered cone ^(Mn) ; this depends upon relating our choice 
of X(n) to the convex cones (a^ 0)~ and (a* 0)~ . 

THE CLASSIFICATION OF TEMPERED REPRESENTATIONS 

With the Langlands classification behind us, a more detailed 
analysis of tempered growth behavior is required. The defini­
tion of a tempered representation was that all of the homology 
(or equivalently asymptotic) exponents lie inside the closed tem­
pered cone ^{G) ; recall Figure 3. This condition is equivalent to a 
growth estimate on the matrix coefficients called the weak inequal­
ity (too complicated to state in our exposition). One can contrast 
the temperedness condition on n with the stronger requirement 
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C(G) 

Case l 
closure(<r0) 

closure«7o) 
Case 2 

closure«n 0) 
Case 3 

%%*% =typical leading homology exponents 

FIGURE 3 

that all of the homology (or equivalently asymptotic) exponents of 
n lie in the interior of the closed tempered cone %?(G), in which 
case we say that n is rapidly decreasing. The rapidly decreasing 
condition is equivalent to a growth estimate on the matrix coef­
ficients called the strong inequality (likewise complicated) and, in 
turn, this is equivalent to the square integrability of the matrix 
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coefficients of it. In particular, rapidly decreasing representations 
are unitary. 

A result of Harish-Chandra, Langlands and Trombi asserts: Ev­
ery irreducible tempered representation is a direct summand of a 
^-induced representation Ip(S ® elfi), with ô square integrable 
and n G ÛQ . This result says that every irreducible tempered rep­
resentation is unitary, justifying one of our containments in Figure 
1 (since our induction process takes unitary representations to uni­
tary representations). Moreover, we now see that the classification 
is complete once we classify the square integrable representations 
of a real reductive group and unambiguously describe the sum-
mands of each such Ip(ô ® el,i). 

The classification of the irreducible square integrable represen­
tations involves an existence result and an exhaustion result The 
original approach, due to Harish-Chandra, involved a detailed anal­
ysis of the Fourier transform ©^ for n an admissible representa­
tion of G ; earlier, we only defined this for unitary representations, 
but the definition works in our wider context. Harish-Chandra 
made a detailed study of the singularities of the distribution 0^ , 
one of the consequences of which was the following: 

(7) Regularity Theorem, The distribution Qn is given 
by integration against a locally integrable function 
on G (still denoted by @n and called the character 
of n) which is real analytic on a full Haar measure 
dense subset G' of G. 

Using this, Harish-Chandra proceeded to construct the characters 
of the irreducible square integrable representations. 

By contrast, Wallach's development (Chapter 6) is to postpone 
the regularity theorem and construct the candidates for the square 
integrable representations directly. This construction involves an 
induction procedure different than the one discussed earlier. This 
process, often called cohomological parabolic induction, is a ho-
mological construction of representations, suggested by work of 
Gregg Zuckerman in the mid 1970s. As with our previous no­
tion of induction, cohomological parabolic induction starts with 
a Harish-Chandra module of a real reductive subgroup L of G 
and constructs a Harish-Chandra module for G. The idea comes 
from complex geometry and roughly amounts to algebraicizing 
Dolbeault cohomology groups to obtain a family of derived func­
tors 3tk

q : %WL -+ %fCG, see [5]. The index q refers to a sub-
algebra of g containing a fixed maximal solvable subalgebra and, 
additionally, when we decompose q - 10 u, we want / to be the 
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complexified Lie algebra of a real reductive subgroup L of G, 
but u need not have this property. In fact, if we apply the 31^ 
construction in the case when q is the complexified Lie algebra of 
a parabolic subgroup g of 6 , then we obtain the earlier notion 
of induction. 

If we begin with suitable choices of q, s and Ç (a representa­
tion of L), then 3Zs

q{£) are irreducible unitary representations of 
G, defined to be the discrete series representations. The proof of 
the unitarity of these modules in the book is taken from a paper 
of the author [6]. Further asymptotic analysis then shows that the 
discrete series representations are rapidly decreasing, hence square 
integrable representations. To classify the square integrable rep­
resentations, it suffices to show that every square integrable rep­
resentation is a discrete series. This involves the introduction of 
a function space, the space of cusp forms (Chapter 7), which con­
tains the matrix coefficients of square integrable representations; in 
fact, it is spanned by them. In particular, the matrix coefficients 
of the discrete series lie in the space of cusp forms. Chapter 8 
then builds on these ideas to prove that the class of discrete series 
representations exhausts the class of all irreducible square inte­
grable representations, referred to as the Completeness Theorem 
of Harish-Chandra. 

To complete the classification of tempered representations, we 
need to describe the summands of Ip{ô ®elM), with ô square in­
tegrable and ju G OQ . This was carried out by Knapp-Zuckerman 
[4] and involves (among other things) a deformation theory for 
representations. This theory, commonly called coherent continua­
tion, depends on a discrete parameter and allows us to go from the 
discrete series to limits of discrete series, which are the parametriz­
ing building blocks in the Knapp-Zuckerman classification. This 
completes the classification of Ga . 

TWO RELATED TOPICS 

We have indicated a close connection between the asymptotic 
behavior of matrix coefficients and the n-homology groups of n . 
In turn, these notions are very closely related to the distributions 
0^ , viewed as functions on G'. One is led to the set of leading 

character exponents of n on A~^ , denoted J ^ a r , and this set co­
incides with the previously defined sets <&hom and J^sy . In fact, 
one can show that 0^ restricted to G' n MmA^n can be expressed 
as a quotient of two functions, the numerator of which is the Eu-
1er characteristic of H^(nm,n) as a MmAm representation. This 
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result, the Osborne conjecture, was proved by Hecht-Schmid in the 
late 1970s and ties together the theory of characters, asymptotics, 
and n-homology presented in Wallach's book. 

A second topic of related interest is the algebraic character the­
ory of Harish-Chandra modules. This is one objective of Vogan's 
book Representations of real reductive Lie groups [5]. By the regu­
larity theorem, we know that 0^ can be represented by a function 
on G' and one can pose the problem: 

(8) Character Problem. Compute the characters of the 
irreducible admissible representations. 

To do so, one shows that is enough to compute the restriction of 
0^ to certain commutative subgroups of G, called Cartan sub-
groups. (This idea of restricting to commutative subgroups illus­
trates a fundamental philosophy throughout all of Harish-
Chandra's work: Reformulate the problem at hand in terms of 
harmonic analysis of commutative subgroups of G. The "char­
acter 0^ " is so named, since its expression involves a finite com­
bination of classical one-dimensional characters of these Cartan 
subgroups.) The character 0 I n d tô^e^ of a P-induced representa­
tion \n<\p(ô<8>ev), with ô an irreducible tempered representation 
of L, can be computed via an algorithm of Harish-Chandra; we 
will call these good characters. Then, given an irreducible admis­
sible representation n of G and working within an appropriate 
Grothendieck group, one can express 

®TT = Z ^ CP,ôv®lndp(ô®e") ' CP,ô,veZ' 
good characters 

To solve the character problem, one must compute the integers 
cp Ô v - Vogan's book [5] formulates a conjecture to compute the 
numbers cp ô v , which he has since proved, thus solving the char­
acter problem. This solution depends upon connections between 
Representation theory, D-module theory and Intersection cohomol-
ogy-

FINAL REMARKS 

Another recent book which covers some of the same ground, 
but from a different viewpoint is Knapp's Representation theory of 
semisimple groups [3]. It differs in at least three ways: Wallach sup­
plies complete proofs (and extensive appendices), whereas Knapp 
covers additional ground by sketching proofs or, in some cases, 
proving results in special cases. Also, Knapp's approach is more 
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analytic, as exemplified by the different treatment of the discrete 
series. Finally, Knapp's book contains a large supply of examples, 
valuable to both novice and expert. Because of these differences, 
any serious reader of Real reductive groups J should have Knapp's 
book [3], together with Vogan's book [5], close at hand. 
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On August 15, 1989, the op-ed page of the New York Times car­
ried an article entitled Call it Pi in the sky by Stewart Wills. The 
leading paragraph gives Wills' immediate response to the recent 
work of the Chudnovskys concerning the digits of n\ "I shouldn't 
have let the news upset me. It was cause for celebration. Two 
Columbia University mathematicians using a powerful computer 
had calculated the symbol pi to 480 million decimal places. Yet it 


