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The concept of a triangulated category seems to have appeared 
in the sixties, and to go back to suggestions of Grothendieck. The 
basic reference is the article of Verdier [26]. The most famous 
example is the derived category D (sf) of bounded complexes 
over an abelian category sf . It is constructed as follows. Let 
C ($/) denote the (abelian) category of bounded complexes over 
sf . In many situations, occurring for instance in algebraic geom­
etry, complexes are determined only up to quasi-isomorphisms, 
that is, morphisms of complexes which induce an isomorphism 
in cohomology. We would then like to replace C (sf) by a new 
category in which such complexes could be declared isomorphic. 
The first step in the construction comes from the observation that 
in such situations, morphisms of complexes are only determined 
up to homotopy. It is thus reasonable to replace CbÇaf) by the 
homotopy category K ($/), whose objects are the same as those 
of C {sf), but whose morphisms are the homotopy classes of 
morphisms of complexes. The homotopy category K (srf) is not 
abelian in general. It enjoys a weaker structure, that of a triangu­
lated category. In this structure, short exact sequences are replaced 
by what are called distinguished triangles. Finally, one obtains the 
derived category Db($/) from Kb(sf) by declaring all the quasi-
isomorphisms invertible, or, more formally, by localising K (s/) 
relative to the multiplicative system of quasi-isomorphisms (using 
the calculus of fractions developed in [11]). The category D {$/) 
inherits from K (s/) the structure of a triangulated category. 
Since its introduction, this concept was used in many problems 
of algebraic geometry and homological algebra, most notably in 
duality theory (see, for instance, [18, 6 or 20]). 

Recently, it was shown that the derived categories of certain cat­
egories of coherent sheaves are equivalent to the derived category 
of bounded complexes of finitely generated modules over certain 
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finite dimensional algebras (see, for instance, [7, 5, 21] or, more re­
cently, [12]). There was therefore a need to bridge the gap between 
the theory of triangulated categories and the representation theory 
of finite dimensional algebras which has been the subject of intense 
research over the last twenty years. As the title indicates, Happel's 
research monograph Triangulated categories in the representation 
theory of finite dimensional algebras does just that. Given an alge­
bra A (by which is always meant an associative algebra, with 1, 
finite dimensional over an algebraically closed field k ), he consid­
ers the derived category D (mod A), briefly denoted by D {A), 
of bounded complexes over the category mod A of finitely gener­
ated left yl-modules. On the one hand, Happel's book contains a 
concrete description of D (A), on the other hand, it shows how 
one can use the concept of triangulated category to study the cat­
egory mod A. 

The first two chapters of the book are mainly concerned with the 
concrete description of Db(A). The author starts by defining and 
studying a notion of Auslander-Reiten triangles in D (A), inspired 
by the notion of Auslander-Reiten sequences in mod A (see [4]). 
If A has finite global dimension, then D (A) has Auslander-
Reiten triangles. It is then possible to define the quiver of D (A) 
as one defines the Auslander-Reiten quiver of an algebra, and to 
give a complete description of this former quiver, for A basic and 
hereditary. Next, the author considers the repetitive algebra A of 
an algebra A, see [19]. This is defined as follows. Let AQA be the 
minimal injective cogenerator bimodule, that is, let AQA be the k-
vector space Q = Homk(A, k) endowed with the A-^4-bimodule 
structure defined by 

(afb)(x) = f(bxa) 

for a, b, x e A and f € Q. The underlying fc-vector space of A 
is defined by 

\/€Z / \/€Z / 

where A- — A and Qt = Q for all i G Z . Let (ai9 f t ) i e z and 

{bt, Si)iez ^ e t w o e l e m e n t s of A, then their product is defined by 

(«/ > fihez • (*/ > */)/€Z = KA' > fl/+i*/ + fixiez • 

One thus obtains an infinite dimensional associative self-injective 
algebra without identity. More suggestively, one can look at A as 
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being the doubly infinite matrix algebra 

A = 

e, A 
0 

I+l 

w+i \ 
\ 

where matrices have only finitely many nonzero coefficients, A. = 
A and Q. = Q for all i eZ, all the other coefficients are zero, and 
the multiplication is induced from the A- ,4-bimodule structure of 
Q, and the zero map Q®A Q —• 0. The author exhibits a structure 
of triangulated category on the stable module category mod A, 
whose objects are the same as those of mod A (thus, finite di­
mensional left ^-modules), but the set of morphisms from ~M 
to ^N equals the quotient of Hom-(M, N) modulo the subset 

of those morphisms which factor through a projective ^4-module. 
The main theorem states that there exists a full and faithful ex­
act functor D (A) —• mod A. If A has finite global dimension, 
this functor is even an equivalence of triangulated categories. This 
result, originally published in [13], has had since numerous appli­
cations. For instance, it allowed Happel and Ringel to describe 
in [17] the derived category of a tubular algebra (in the sense of 
[25]). 

The third chapter is devoted to tilting theory, which is now a 
highly developed branch of representation theory. The tilting pro­
cess can be understood as follows. For an algebra A, some (finite 
dimensional) ^-modules M have the property that the endomor-
phism algebra B = End(^M) retains many of the properties of 
A. Thus, it is possible to understand a lot about the category 
mod B using our knowledge of mod A. Such a module AM is 
called a tilting module (intuitively, a tilting module is thus a mod­
ule which is "close to," but generally not equal to, a Morita pro-
generator in mod A). Tilting theory has its origin in the use by 
Bernstein, Gelfand and Ponomarev of reflection functors in order 
to prove Gabriel's theorem [8]. The first axiomatic definition of 
tilting modules is due to Brenner and Butler [9], and the one most 
commonly used nowadays to Happel and Ringel [16]. Further gen­
eralisations of this notion are due to Miyashita ([22], see also [13]) 
and Wakamatsu [27]. It is shown in the third chapter of Happel's 
monograph that the derived category is invariant under tilting: let 
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A be an algebra of finite global dimension and AM an ^4-module 
such that Extl

A(M, M) = 0 (for all i > 0) and there exists an 
exact sequence 

0 -> AA -+ M0 -• M1 -+ • M5 -+ 0 

where all the MJ (0 < j < s) are direct sums of indecomposable 
direct summands of M, then, if B = End(^M), there exists an 
equivalence Z> (A) -^ D (B) of triangulated categories. This is 
in particular the case if M is a tilting module, that is, if M is 
as above, with s < 1 and pd M < 1. This invariance of the 
derived category was shown in [13], and was since generalised by 
Cline, Parshall and Scott [10] to the case where pd M < oo, but 
gl. dim. A is arbitrary. They also asked the question to find nec­
essary and sufficient conditions on two algebras A and B so that 
D (A) -^-> D (B), as triangulated categories, a problem solved by 

J. Rickard [23]. 
Using the invariance of the derived category under tilting, Hap-

pel proves most of the classical results of tilting theory, as well as 
some new results. For instance, he shows that, if A is a heredi­
tary algebra and AM a module such that Ext^(M, M) = 0, then 
B = End(^Af) is a tilted algebra (that is, there exists a module 
BU such that End(BU) is hereditary). 

The fourth chapter studies properties of the piecewise hereditary 
algebras. Since the derived category of a hereditary algebra H is 
completely described, it is reasonable to consider the algebras A 
such that Db{A) -^-* Db(H), as triangulated categories. Such an 
algebra A is called piecewise hereditary of type H. The main 
theorem (taken from [15]) states that an algebra A is piecewise 
hereditary of type H if and only if A is tiltable to H, that is, there 
exists a sequence of triples (Aj9 AM\ Ai+X = End(AMl))0<i<m 

such that A0 = A, Am= H and Ml is a tilting ^-module (so 
that the class of piecewise hereditary algebras coincides with the 
class of iterated tilted algebras [1]). 

The last, short, chapter of this book is about trivial extension 
algebras. Let again AQA= Homk(AAA, k) denote the minimal in-
jective cogenerator bimodule. The trivial extension T(A) o f A by 
Q has as underlying A>vector space A © Q with the multiplication 
defined by 

(a, f)(b, g) = (ab, ag + fb) 
(for a, b G A and ƒ , g G Q). Then T(A) is a self-injective and 
even a symmetric algebra. It is Z-graded, with the elements of 
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A © 0 of degree 0 and those of 0 0 Q of degree 1. The category 
modzT(A) of finitely generated Z-graded left r(,4)-modules 
with morphisms of degree 0 is equivalent to mod^4, so that, if 
gl.dim. A < oo, then Db(A) - ^ modzr(v4), as triangulated cat­
egories. Happel gives a short proof of the statement that T(A) 
is representation-finite (that is, has only finitely many nonisomor-
phic indecomposable modules) if and only if A is tiltable to a 
representation-finite hereditary algebra [2]. 

This monograph is in my opinion a very valuable introduction 
to the use of triangulated categories in representation theory. Since 
it was written, and partly thanks to it, the theory has advanced very 
quickly (let us just mention the results in [3, 10, 14, 17, 23, 24]). 
It should be easily readable for the expert in representation theory, 
the graduate student and the algebraist, with only the definition of 
the derived category assumed. One of its most attractive features 
is the large number of examples explained in detail throughout 
the book. Finally, since most of the results exposed have never 
before appeared in a book, the nonexpert and the research student 
may find Happel's monograph a useful introduction to many of 
the branches of modern representation theory. 
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