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A GENERALIZATION OF SELBERG’S BETA INTEGRAL

ROBERT A. GUSTAFSON

ABSTRACT. We evaluate several infinite families of multi-
dimensional integrals which are generalizations or analogs of
Euler’s classical beta integral. We first evaluate a g-analog of
Selberg’s beta integral. This integral is then used to prove the
Macdonald-Morris conjectures for the affine root systems of
types S(C;) and S(C,)V and to give a new proof of these
conjectures for S(BC)), S(B,), S(BI)V and S(D;) .

1. INTRODUCTION

In 1944, A. Selberg [23] evaluated the following integral (see
also Aomoto [1]):
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where n is a positive integer, x, y, z € Cand Re(x), Re(y) >0
and Re(z) > —max{L, Re(x)/(n—1), Re(y)/(n—1)}. For n =1,
the integral (1) reduces to Euler’s classical beta integral.

Nowlet n>1 and a,, a,, a,, a,, b, g€ C with
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For ¢ € C define
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If T" is the n-fold direct product of the unit circle {t € C||t] = 1}
traversed in the positive direction, then we can evaluate the integral
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Then n = 1 case of integral (2) is due to Askey and Wilson [4].
The integral (2) is a g-analog of (1) in the sense that after a change
of variables and an appropriate specialization of (2) and limit as
g — 1, then (1) can be deduced from (2).

Selberg’s integral (1) has had diverse applications in fields rang-
ing from number theory, physics, statistics, combinatorics, algebra
and analysis. Two particular applications were a use by Bombieri
to prove Mehta’s conjecture [18] and by Macdonald [17] to prove
some of his conjectures (¢ = 1 case) for the affine root systems
(for definition and properties see [15]) of types S(BC,), S(B)),
S(B)Y, S(C,), S(C,)’ and S(D,) forall /> 1 (when defined).
Just as Macdonald used integral (1) to prove some of his (g = 1)
conjectures, we will use integral (2) to prove for the same set of
affine root systems the corresponding Macdonald-Morris conjec-
tures with arbitrary parameter ¢ .

Macdonald’s root system conjectures in [17] were motivated
partly by a conjecture of Dyson [7] related to the root system
A4, , a g-analog of Dyson’s conjecture made by Andrews [2] and
some conjectures of Morris [19] for the root system of type G, .
Dyson’s conjecture was proved by Gunson [10] and Wilson [25].
The Andrews-Dyson conjecture was proved by Zeilberger and Bres-
soud [28].

Morris’ Conjecture A in [19] for arbitrary parameter g and
any reduced irreducible affine root system S extends Macdon-
ald’s Conjectures 2.3 and 3.1 in [17]. In the simplest case of
these Macdonald-Morris conjectures, let R be a reduced finite
(not affine) root system of rank / with basis {«a,,...,o;}. For
each a € R, let ¢” be the formal exponential, which is an element
of the group ring of the lattice generated by R. Let d,, ..., d,



A GENERALIZATION OF SELBERG’S BETA INTEGRAL 99

be the degrees of the fundamental invariants of the Weyl group
W(R).

Conjecture (Macdonald [17, Conjecture 3.1]). With the above no-
tation, the constant term (i.e. involving q but no exponential )
in
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where k is a positive integer or +oo is
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where

is the “q-binomial coefficient”

(1-¢")(1-¢""-(1-¢"")
(1-g)(1-¢%)(1-4"

We will actually prove the more general Morris’ Conjecture
A [19] for the affine root systems S of types S(BC)), S(B)),
S(B)Y, S(C), S(C)" and S(D,) forall I > 1 (when defined)
and for arbitrary parameter ¢ . Macdonald’s Conjecture 3.1 stated
above, where R is a finite root system of type B, C;, or D,, then
follows as a special case of Morris’ Conjecture A for S(B,), S(C))
and S(D;). Kadell [14] has previously proved these conjectures
for all affine root systems of type S(BC,) and hence S(B,), S(B,)V
and S(D,). The Macdonald-Morris conjectures for R = G, have
been proved by Habsieger [13] and Zeilberger [26]. See Garvan
[8] for F,, Garvan and Gonnet [9] for S(F4)V , Zeilberger [27]
for S(Gz)v and Opdam [20] for the ¢ = 1 conjectures. There
is also the conjecture of Rahman [21] which seems related to the
special case of integral (2) where a, = ql/ 2al and a,=¢q 12 a,.

2. PROOF OF INTEGRAL (2)

Since the n = 1 case of (2) is proved in [4], we may assume
that n > 2. Denote the integral on the left-hand side of (2) by
I(a,,a,,a,,a,;b;q). Let ¢ eC, |cj| <l,for 1<j<2n+2
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with ¢ and T as above. In [11] we have evaluated the integral
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With notation as above, consider the integral
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where b'/% is any fixed square root of 5. In the integral (4) we
may use identity (3) to evaluate the interior integral either with re-
spect to the set of variables {s,,...,s,_,} or, by changing the or-
der of integration, with respect to the set of variables {¢,,...,1,}.
Equating the resulting integrals we obtain
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We finish the proof of identity (2) by doing induction on #, using
identity (5) and the Askey-Wilson integral for the case n=1.

3. MoRrRris’ CONJECTURE A

We sketch a proof of Morris’ Conjecture A [19] for the affine
root systems S of types S(BC,), S(B)), S(B)", S(C), S(C))"
and S(D,) where / > 1 (when defined) and for arbitrary parame-
ter ¢. The proof consists of specializing the parameters in identity
(2) and making use of the identity found in Theorem 2.8 of [16].
As an illustration of this method of proof of Morris’ Conjecture
A, consider the case S = §(C,) where / > 2. Consider the inte-
gral I,(al/z, —-a'’?, ql/zal/2 ql/2 1z, ; b; q) where |a|, |b| < 1.
Multiply the integrand in this integral by

10 (1= bw(t; ') = bw(t; ') ﬁ (1 - aw(t;?))
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where w is an element of the Weyl group W of C,, i.e. a permu-

tation of the variables t, ...t together with inversions t— t._l

and the corresponding action on t~ . The resultmg in-
tegral is independent of w € W . Now summmg over w € W and
using the identity [16, Theorem 2.8] for C; we obtain
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which is equivalent to Morris’ Conjecture A for S(C,) [19, p. 131].

Setting a = b in (6), this also proves Macdonald’s Conjecture 3.1
for R = C, as stated above.

4. SOME INTEGRAL EVALUATIONS

We state some integral identities whose proofs are similar to
that of (2), making use of integral identities from [11 and 12].
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Details of the proofs of these and realted integral identities should
be given elsewhere.

Let n>1 and z,,...,2,,0.,...,0,,4,,...,4,, B, B,,
b,6eCand m,...,m,€Z. Choose z,, ..., z, so that the
integrands in the integrals (9) and (10) below have no poles. Then
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where the contours of integration are the imaginary axis and

min{Re(J), Re(a,), ..., Re(a,)} > 0;
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where the contours of integration are the imaginary axis and

min{Re(d), Re(a,), Re(a,), Re(B,), Re(B,)} > 0;
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4 4
max{ ab" 'l a| . |a0*" "] a } <1
k=1 k=1

and for simplicity we assume that g€ R, 0<g< 1. The n=1
case of (7) is due to de Branges [6] and Wilson [24], of (8) to
Barnes [5], of (9) to Ramanujan [22] and (10) essentially to Askey
[3].

Remarks. The integrals (9) and (10) are equivalent to multiple
series summation theorems which generalize classical bilateral hy-
pergeometric series summation theorems: Dougall’s ,H, sum and
Bailey’s (y, sum. A similar connection between some related in-
tegral evaluations and the corresponding multiple series identities
is explained in [12]. As we plan to describe elsewhere, we are led to
conjecture a family of multiple series summation identities which
are equivalent to the Macdonald-Morris conjectures and contain
the Macdonald identities [15] as special cases.

b
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