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made the book more interesting and would exhibit the close connection 
that topological dynamics has with other branches of Mathematics. 

Another subject which is almost entirely missing is the strong tie, formal 
as well as actual, between ergodic theory and the theory of minimal sets. 
However perhaps this is a subject for another book. 

An obvious disadvantage of the book is the regretable lack of index. 
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Obstacle problems in mathematical physics, by J.-F. Rodrigues. North-
Holland Mathematics Studies, vol. 134, North-Holland, Amsterdam, 
1987, xvi + 352 pp., $71.00. ISBN 0-444-70187-7 

In the beginning, the study of variational problems was very simple. 
The typical problem was to minimize a convex functional over a simple 
subset of a standard Banach space (or Hilbert space). For example, if Q 
is a planar domain with smooth boundary E and g is a function in W12, 
the space of functions with square integrable derivatives, we can look for 
functions minimizing the functional 

I(v)= f \Dv\2dx 

over the subset K of W{>2 consisting of all functions which agree with g on 
Z. (Because of the form of the functional, Wx->2 is a natural space to work 
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in.) It is not hard to show that / does indeed have a unique minimizer u 
in K, which is a weak solution of the boundary value problem 

Au = 0 in Q, u = g on dQ. 

From standard P.D.E. theory, u is analytic inside Q and if g is continuous, 
etc., then so is u. 

More general functions I can be considered, for example, 

I(v)= / F(x,v,Dv)dx 
Ja 

for a convex C2 function F with appropriate growth properties and K as 
before in a suitable underlying Banach space; the additional technicalities 
are not important for the present discussion. 

Other boundary conditions can be introduced as well. The functional 

j(v) = f (\Dv\2 + \v2) dx + p ( vds 
Jçi Jz 

over Wl>2 has a unique minimum u satisfying 

Au = u in Q, Dnu = ft on 2, 

where Dn denotes the inner normal derivative. 
The conversion of minimization problem to boundary value problem 

becomes more complicated if the subset K is modified slightly. A case in 
point is the "simple" question: What is the height of liquid in a tube of 
constant cross-section Q with a curved bottom? Assuming that the height 
u does not oscillate much, it is found by minimizing the functional / over 
the subset K of Wx>2 defined by the inequality u > y/ in Q, for a function 
y/ known as an obstacle, which in this case describes the shape of the 
bottom of the tube. (A more exact functional can be written down, but 
the important new element is the introduction of the obstacle.) Now it is 
easy to show that u satisfies the conditions 

(1) Au = u in Q* = Qn {u > y/}> Dnu = fi on Z* = I n {u > y/}\ 

however, the structure of the set {u > y/} is not so clear. (IfDni// > /? on E, 
then Dn u = {I on X.) The study of this set is basic in obstacle problems. For 
future reference we use the standard notation: I = {x e Q\u(x) = y/(x)} is 
the coincidence set, A = Q\I is the noncoincidence set, and O = d I n Q is 
the free boundary. When the free boundary, the solution, and the obstacle 
are smooth, then 

(2) u = y/ and Du = Dy/ on O. 

If O, Q*, and E* are known, then (1), (2) form an overdetermined bound­
ary value problem for u, but since <E> is unknown and u > y/, we get a 
problem which turns out to be solvable. 

The study of obstacle problems has several basic pieces: 
(A) existence and uniqueness of solutions, 
(B) regularity of w, depending on the regularity of y/, 
(C) regularity of O. 
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As it turns out, verification of (A) is usually easy by abstract methods 
because the functional is usually convex and lower semicontinuous on a 
convex subset K of some Banach space. To see how to get a handle on 
(B) we consider the problem of minimizing / over Wl>2 assuming that 
Z)„^>jSonS. The minimum u of this problem is also the solution of 

min{-Aw + w, u - y/} = 0 in Q, Dnu = P on Z, 

and this boundary value problem can be studied via the method of penal­
ization: for a suitable sequence of functions jUj which vanish for positive 
arguments and tend to +00 for negative arguments, we introduce the fam­
ily of classical boundary value problems 

-AUJ + Uj + jUj(Uj - y/) = 0 in Q, DnUj = fi on X. 

For a suitable choice of/i/s, the w/s converge uniformly to u, and uniform 
estimates on the u/s and their derivatives lead to corresponding estimates 
on u, which imply regularity of the solution of the obstacle problem. For 
example if y/ has bounded second derivatives and if X is smooth enough 
then u has bounded second derivatives. Simple examples show that addi­
tional smoothness of the data of the obstacle problem do not imply any 
more regularity of u. (There are also other approaches to this regularity 
question, but this limiting smoothness is a property of the obstacle problem 
and not of the penalization method.) 

Unfortunately, the methods for studying regularity of solutions of ob­
stacle problems do not give any information on the free boundary. Results 
in this direction are known, though. As important early theorem on regu­
larity of the free boundary is due to Lewy and Stampacchia: if the domain 
is two-dimensional and strictly convex with analytic boundary and if the 
obstacle is analytic and strictly convex with y/ < 0 on Z, y/ > 0 somewhere 
in Q, then the free boundary O for the minimizer of I over the subset of 
Wx '2 with zero boundary data is analytic. More precise relations between 
the regularity of the data and the regularity of the free boundary are known 
today, including some limiting smoothness results. 

Other types of obstacle problems can also be considered. For exam­
ple, one can assume that the obstacle y/ is only defined on some lower 
dimensional set *F (which may be on the boundary) and that the inequal­
ity u > y/ only holds on *F in the definition of K. Alternatively one can 
impose constraints on the gradient of u. These problems have received 
much attention lately. 

Several books are available on the study of obstacle problems and the 
closely related topic of variational inequalities. Two classics are [1] by 
Duvaut and Lions, and [2] by Kinderlehrer and Stampacchia. The first 
spends a great deal of time on the physical processes which motivate the 
mathematical study while the second deals more with the mathematical 
foundations of the theory. The biggest drawback to these books today is 
that they are fairly old (they were written in 1974 and 1980, respectively), 
and a lot of progress has been made since they were written. More recent 
books are by Friedman [3], Troianiello [4], and Rodrigues [5]. Friedman's 
book is certainly the most encyclopedic of the three, with something for 
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everybody although with an emphasis on problems involving jets and cav­
ities. Troianiello, on the other hand, has a more focused point of view 
in a very different direction. He develops the classical theory of elliptic 
differential equations and regularity of their solutions in the framework 
of variational inequalities. A lot of high powered technical machinery 
is used, and this book is the most theoretical of those listed here. Ro-
drigues points out in the preface that he is trying for a modern version of 
Duvaut and Lions; he is more concerned with physical motivation than 
with development of theory. Theorems on elliptic differential equations 
are quoted as needed. The book succeeds at emphasizing the physical point 
of view without disregarding mathematical rigor. Some of the models are 
described rather sketchily, though. 

In addition to the applications, Rodrigues spends more time on the 
study of stability of free boundaries then the other authors listed. 

REFERENCES 

1. G. Duvaut and J.-L. Lions, Inequalities in mechanics and physics, Springer-Verlag, 
Berlin and New York, 1976. 

2. D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and 
their applications, Academic Press, New York, 1980. 

3. A.Friedman, Variational principles andfree-boundary problems, Wiley, 1982 (reprinted 
Krieger, Malabar, FL, 1988). 

4. G. M. Troianiello, Elliptic differential equations and obstacle problems, Plenum, New 
York, 1987. 

5. J.-F. Rodrigues, Obstacle problems im mathematical physics, North-Holland, Amster­
dam, 1987. 

GARY M. LIEBERMAN 
IOWA STATE UNIVERSITY 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 21, Number 2, October 1989 
© 1989 American Mathematical Society 
0273-0979/89 $1.00 + $.25 per page 

Nest algebras, by Kenneth R. Davidson. Pitman Research Notes in Math­
ematical Sciences, vol. 191, Longman Scientific and Technical, Harlow, 
1988, 411 pp., $74.95. ISBN 0-582-01993-1 

Nest algebras were introduced by J. R. Ringrose in 1965 shortly after 
studies by R. V. Kadison and I. M. Singer of a related class of operator 
algebras, and in the last twenty-five years the subject has matured to the 
extent that they form a moderately well-understood class in the category 
of non-self-adjoint operator algebras. Most notably Ringrose's similarity 
problem has been resolved, finally, in a curious way requiring a deep and 
unexpected excursion into the analysis of quasitriangular algebras. More­
over there are now multiple points of contact with other areas of operator 
theory and many intriguing basic problems remain unsettled. 

"Non-self-adjoint." This is, unfortunately, a rather inelegant adjective, 
a kind of apologetic antidefinition, but it may be seen less in the coming 


