RESEARCH ANNOUNCEMENTS

BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 21, Number 2, October 1989

ON SOLVABLE SUBGROUPS OF THE SYMMETRIC GROUP

YAKOV G. BERKOVICH

1. Introduction.. In this note we give exact values of certain invariants of the symmetric group S_{n} of degree n.

Let n be a positive integer, p a prime, $\sigma(G)$ the derived length and $\nu(G)$ the nilpotent length of a solvable group G. Let $\operatorname{SOLV}(n)$ denote the set of all solvable subgroups of S_{n} and put

$$
\begin{gathered}
\operatorname{SOLV}\left(n, p^{\prime}\right)=\{G \in \operatorname{SOLV}(n)|p \nmid| G \mid\}, \\
\sigma(n)=\max \{\sigma(G) \mid G \in \operatorname{SOLV}(n)\}, \\
\nu(n)=\max \{\nu(G) \mid G \in \operatorname{SOLV}(n)\}
\end{gathered}
$$

Similarly one defines $\sigma\left(n, p^{\prime}\right)$ and $\nu\left(n, p^{\prime}\right)$.
Let \mathbf{N} be the set of all nonnegative integers. For $t \in \mathbf{N}$ we put $s(t)=$ $\min \{m \in \mathbf{N} \mid \sigma(m)=t\}$ and $n(t)=\min \{m \in \mathbf{N} \mid \nu(m)=t\}$. For a partial ordered set L we denote by μL the set of all maximal elements in L. We put $\Sigma(t)=\{G \in \mu \operatorname{SOLV}(s(t)) \mid \sigma(G)=t\}$ and $\Sigma\left(t, p^{\prime}\right)=\{G \in$ $\left.\mu \operatorname{SOLV}\left(s\left(t, p^{\prime}\right), p^{\prime}\right) \mid \sigma(G)=t\right\}$. Similarly one defines $N(t)$ and $N\left(t, p^{\prime}\right)$.

We define the structure of all elements of the sets $\Sigma(t), \Sigma\left(t, p^{\prime}\right), N(t)$ and $N\left(t, p^{\prime}\right)$.

We assume that, as permutations groups, S_{m} has degree m, $\operatorname{AGL}(2,3)$ has degree 9 , the cyclic group $C(p)$ of order p has degree p, the groups $\operatorname{AGL}(1, p)$ and $\frac{1}{2} \operatorname{AGL}(1, p)$ (=the subgroup of index 2 in $\left.\operatorname{AGL}(1, p)\right)$ have degree p.

We say that a group W is of type $\left\{B_{1}^{k_{1}}, \ldots, B_{s}^{k_{s}}\right\}$ if W a wreath product of k_{1} copies of the permutation group B_{1}, k_{2} copies of the permutation group B_{2} and so on (the order of the factors is arbitrary).

2. Main results.

[^0]Theorem 1. Let $G_{t} \in \Sigma(t)$. If $t<4$, then $G_{t}=S_{t+1}$. If $t=4$, then G_{t} is of type $\left\{S_{2}, S_{4}\right\}$. Suppose now that $t>4$.
(a) $G_{5 k}$ is of type $\left\{\operatorname{AGL}(2,3)^{k}\right\}\left(\right.$ so $\left.s(5 k)=9^{k}\right)$.
(b) $G_{5 k+1}$ is of type $\left\{S_{4}^{2}, \operatorname{AGL}(2,3)^{k-1}\right\}$.
(c) $G_{5 k+2}$ is of type $\left\{S_{3}, \operatorname{AGL}(2,3)^{k}\right\}$.
(d) $G_{5 k+3}$ is of type $\left\{S_{4}, \operatorname{AGL}(2,3)^{k}\right\}$.
(e) $G_{5 k+4}$ is of type $\left\{S_{4}^{3}, \operatorname{AGL}(2,3)^{k-1}\right\}$ and $s(5 k+4)=4^{3} \cdot 9^{k-1}$.

If the function s is known, one can restore σ.
Theorem 2. Let $G_{t} \in \Sigma\left(t, 2^{\prime}\right)$. Then
(a) $G_{2 k}$ is of type $\left\{\frac{1}{2} \mathrm{AGL}(1,7)^{k}\right\}$ and $s\left(2 k, 2^{\prime}\right)=7^{k}$.
(b) $G_{2 k+1}$ is of type $\left\{C(3), \frac{1}{2} \mathrm{AGL}(1,7)^{k}\right\}$ and $s\left(2 k+1,2^{\prime}\right)=3 \cdot 7^{k}$.

Theorem 3. If $G_{t} \in \Sigma\left(t, 3^{\prime}\right)$, then $G_{t} \in \operatorname{Syl}_{2}\left(S_{2^{t}}\right)$.
Theorem 4. If $p>3$, then $\Sigma\left(t, p^{\prime}\right)=\Sigma(t)$.
Theorem 5. Let $G_{t} \in N(t)$. Then $G_{1}=S_{2}$. Suppose that $t>1$.
(a) $G_{4 k}$ is of type $\left\{\operatorname{AGL}(2,3)^{a}, S_{3}^{2(k-a)}\right\}, a \leq k$.
(b) $G_{4 k+1}=S_{4} \mathrm{wr} H$ where H is of type $\left\{\operatorname{AGL}(2,3)^{a}, S_{3}^{2(k-a)-1}\right\}, a<k$.
(c) $G_{4 k+2}$ is of type $\left\{\operatorname{AGL}(2,3)^{a}, S_{3}^{2(k-a)+1}\right\}, a \leq k$.
(d) $G_{4 k+3}=S_{4} \mathrm{wr} G_{4 k}$ and $n(4 k+3)=4 \cdot 3^{2 k}$.

Theorem 6. Let $G_{t} \in N\left(t, 2^{\prime}\right)$. Then
(a) $G_{2 k} \in \Sigma\left(2 k, 2^{\prime}\right)$ and $N\left(2 k, 2^{\prime}\right)=\Sigma\left(t, 2^{\prime}\right)$.
(b) $G_{2 k+1}=C(3)$ wr $G_{2 k} \in \Sigma\left(2 k+1,2^{\prime}\right.$) (but $N\left(2 k+1,2^{\prime}\right) \neq$ $\left.\Sigma\left(2 k+1,2^{\prime}\right)\right)$.

Theorem 7. Let $G_{t} \in N\left(t, 3^{\prime}\right)$. Then
(a) $G_{2 k}$ is of type $\left\{\operatorname{AGL}(1,5)^{k}\right\}$ and $n\left(2 k, 3^{\prime}\right)=5^{k}$.
(b) $G_{2 k+1}=C(2) \mathrm{wr} G_{2 k}, n\left(2 k+1,3^{\prime}\right)=2 \cdot 5^{k}$.

Theorem 8. If $p>3$, then $N\left(t, p^{\prime}\right)=N(t)$.
If $G=p_{1}^{m_{1}} \cdots p_{s}^{m_{s}}$, then $\lambda(G)=m_{1}+\cdots+m_{s}$. If G is solvable, its composition length $c(G)$ is equal to $\lambda(G)$. We put

$$
c(n)=\max \{c(G) \mid G \in \operatorname{SOLV}(n)\}
$$

Similarly one defines $c\left(n, p^{\prime}\right)$.
Theorem 9. Let $G \in \operatorname{SOLV}(n)$ be transitive and $c(G)=c(n)$. Then
(a) $n=4^{k}, G$ is of type $\left\{S_{4}^{k}\right\}$.
(b) $n=2 \cdot 4^{k}, G=H \mathrm{wr} S_{2}$ where H is from (a).
(c) $n=3 \cdot 4^{k}, G=H \mathrm{wr} S_{3}$ where H is from (a).
(d) $n=6 \cdot 4^{k}, G=H \mathrm{wr} F$ where H is from (a), F is of type $\left\{S_{2}, S_{3}\right\}$.

Theorem 10. Let $G \in \operatorname{SOLV}\left(n, 2^{\prime}\right)$ be transitive and $c(G)=c\left(n, 2^{\prime}\right)$. Then
(a) $n=3^{k}, G \in \operatorname{Syl}_{3}\left(S_{n}\right)$.
(b) $n=5 \cdot 3^{k}, G=H \mathrm{wr} C$ (5) where H is from (a).
(c) $n=7 \cdot 3^{k}, G=H \mathrm{wr} \frac{1}{2} \mathrm{AGL}(1,7)$ where H is from (a).

Theorem 11. Let $G \in \operatorname{SOLV}\left(n, 3^{\prime}\right)$ be transitive and $c(G)=c\left(n, 3^{\prime}\right)$. Then
(a) $n=2^{t}, G \in \operatorname{Syl}_{2}\left(S_{2^{t}}\right)$.
(b) $n=5 \cdot 2^{t}, G=H \mathrm{wr} \operatorname{AGL}(1,5)$ where H is from (a).

Theorem 12. If $p>3$, then n is the same as in Theorem 9 and $c\left(n, p^{\prime}\right)=$ $c(n)$ for any transitive $G \in \operatorname{SOLV}\left(n, p^{\prime}\right)$ with $c(G)=c\left(n, p^{\prime}\right) ; G$ is the group from Theorem 9.

We put

$$
o(n)=\max \{\mid G \| G \in \operatorname{SOLV}(n)\}
$$

and

$$
o\left(n, p^{\prime}\right)=\max \left\{\mid G \| G \in \operatorname{SOLV}\left(n, p^{\prime}\right)\right\}
$$

Theorem 13. Let a transitive group $G \in \operatorname{SOLV}(n)$ has an order $o(n)$. Then
(a) $n=4^{k}, G$ is of type $\left\{S_{4}^{k}\right\}$.
(b) $n=2 \cdot 4^{k}, G=H \mathrm{wr} S_{2}$ where H is from (a).
(c) $n=3 \cdot 4^{k}, G=H \mathrm{wr} S_{3}$ where H is from (a).
(d) $n=2 \cdot 3 \cdot 4^{k}, G=H \mathrm{wr} S_{3} \mathrm{wr} S_{2}$ where H is from (a).
(e) $n=3^{2} \cdot 4^{k}, G=H \mathrm{wr} S_{3} \mathrm{wr} S_{3}$ where H is from (a).

Theorem 14. If $p>3$ and a transitive group $G \in \operatorname{SOLV}\left(n, p^{\prime}\right)$ has the order $o\left(n, p^{\prime}\right)$, then $|G|=o(n)$.

Theorem 15. Let a transitive group $G=\operatorname{SOLV}\left(n, 2^{\prime}\right)$ has the order $o\left(n, 2^{\prime}\right)$. Then
(a) $n=3^{k}, G=\operatorname{Syl}_{3}\left(S_{n}\right)$.
(b) $n=5 \cdot 3^{k}, G=H \mathrm{wr} C$ (5) where H is from (a).
(c) $n=7 \cdot 3^{k}, G=H \mathrm{wr} \frac{1}{2} \operatorname{AGL}(1,7)$ where H is from (a).

Theorem 16. Let a transitive group $G \in \operatorname{SOLV}\left(n, 3^{\prime}\right)$ has the order $o\left(n, 3^{\prime}\right)$. Then
(a) $n=2^{k}, G \in \operatorname{Syl}_{2}\left(S_{n}\right)$.
(b) $n=5 \cdot 2^{k}, G=\operatorname{AGL}(1,5)$ wr H where H is from (a).

Theorem 17. Let N be a nilpotent subgroup of maximal order in S_{n}. If $n \not \equiv 3(\bmod 4)$. then $N \in \operatorname{Syl}_{2}\left(S_{n}\right)$. If $n \equiv 3(\bmod 4)$, then $N=P \times C(3)$ where $P \in \operatorname{Syl}_{2}\left(S_{n-3}\right)$.

Theorem 18. Let N be a nilpotent subgroup of maximal odd order in S_{n}. If $n \not \equiv 5(\bmod 9)$, then $N \in \operatorname{Syl}_{3}\left(S_{n}\right)$. If $n \equiv 5(\bmod 9)$, then $N=P \times C(5)$ where $P \in \operatorname{Syl}_{3}\left(S_{n-5}\right)$.

Theorem 19. Let N be a nilpotent subgroup of maximal p^{\prime}-order in S_{n}, $p>2$. If $p=3$, then $N \in \operatorname{Syl}_{2}\left(S_{n}\right)$. If $p>3$, then N be the group from Theorem 17.

Other results in this direction are in my paper, Subgroups of symmetric and alternating groups, Izv. Severo-Kavkaz. Nauchn. Tsentra Vyssh. Shkoly, Estestvennye Nauki 1 (1981), 6-9.

Pr Engels 111, KV18, (344006) Rostov-on-Don, USSR

[^0]: Received by the editors May 8, 1989.
 1980 Mathematics Subject Classification (1985 Revision). Primary 20B35; Secondary 20D10, 20D15.

