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One of the most fascinating aspects of number theory and arithmetic 
algebraic geometry is the deep and mysterious connection between arith­
metic and analysis. One example of this is the formula for the residue of 
the zeta function of a number field F, 

(1) hm(5 - \)CF(S) = J — 
•*->! wVd 

where r\ (resp. ri) is the number of real (resp. complex) embeddings of F, 
h is the class number of F, R is the regulator (a determinant of logarithms 
of global units) of F, w is the number of roots of unity in F, and d is the 
discriminant of F. 

Another, more modern example deals with elliptic curves. If E is an 
elliptic curve defined over a number field F (i.e., E is a curve defined by 
an equation y2 = x3 - ax - b with a,b e F and 4a3 - 27 b2 ^ 0), then E has 
an L-function and various arithmetic invariants. The fundamental object 
of arithmetic interest is the set E(F) of points on E with coordinates in 
F\ E(F) has a natural abelian group structure and by the Mordell-Weil 
theorem this group is finitely generated. The L-function is defined by an 
Euler product over primes p of F, 

L(E,s) = l[Lp(Np-s) 
p 

where LP(T) is a polynomial in T of degree at most 2, whose coefficients 
depend on the reduction of E modulo p. The conjecture of Birch and 
Swinnerton-Dyer states that 

(2) rankz E(F) = orcUi L(E, s) 

and further, if we denote this common value by r, the conjecture expresses 
lim5_+i(s - l)~rL(E,s) in terms of other invariants of E, with a formula 
analogous to (1). 
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Since Birch and Swinnerton-Dyer formulated their conjecture in the late 
1950s and early 1960s, many far-reaching generalizations of it have been 
proposed. Today there is a conjectured arithmetic interpretation of the 
behavior of the L-function of any algebraic variety at integer arguments. 
Fortunately in this subject the theorems, although not nearly keeping up 
with the conjectures, have been coming at a good pace. 

One of the important tools in studying this connection between arith­
metic and analysis is Iwasawa theory, which was begun by Iwasawa in the 
1950s. Put most simply, Iwasawa theory is the study of Zp-extensions of 
fields. A Zp -extension of a field K is an abelian extension F of K with 
Gal(F/K) = Zp, the ring of p-adic integers. Studying these infinite ex­
tensions has two major benefits, the first purely algebraic but the second 
much deeper and having to do with the connection between arithmetic and 
analysis discussed above. 

If F/K is a Zp-extension, Galois theory shows that for each integer n > 0 
there is a unique intermediate field Kn, K c Kn c F, with Gal(Kn/K) = 
Z/pnZ, and then F = \JKn. Writing T = Gei(F/K)9 if Y is a complete 
topological Z^-module on which F acts continuously, then we can view Y 
as a module over the Iwasawa algebra 

A = ZpUTl] = limZp[Gal(Kn/K)]. 

The initial benefits of Iwasawa theory stem from the fact that A is 
a very nice ring, much easier to work with in many ways than its quo­
tients Zp[Gal(K„/K)]. For example, A is isomorphic to a power series 
ring ZP[|T]]. (A noncanonical isomorphism can be obtained by choosing 
a topological generator of T and mapping it to the power series 1 + T.) 
Thus A is not only an integral domain, but a unique factorization domain 
as well. Finitely generated A-modules have a simple structure, at least if 
we are willing to give up a small amount of information. Namely, we 
say two A-modules are pseudo-isomorphic if there is a map between them 
with finite kernel and cokernel. The classification theorem states that any 
finitely generated A-module is pseudo-isomorphic to a direct sum of cyclic 
A-modules, A' e A/ fx A e • • • e A/fsA where ƒ e A. 

Simply using commutative algebra in this way can have very useful 
results. For example, suppose F is a Zp-extension of a number field K, 
and let An denote the /?-part of the ideal class group of Kn. Using the ideas 
above applied to the inverse limit lim,4„, Iwasawa proved that there are 
nonnegative integers //,A, and v such that for all sufficiently large n, 

(3) #(An)=p*ip"+An+u. 

The second application of Iwasawa theory is much more subtle. Num­
ber theorists have recognized for a long time that number fields have a 
great deal in common with function fields of curves over finite fields, and 
often advances in one of these areas have led to analogous advances in the 
other. Iwasawa realized that certain special Zp -extensions and associated 
A-modules could provide the analogue for number fields of the p-part of 
the Jacobian of a curve over a finite field, in the following sense. 
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Suppose C is a smooth curve of genus g defined over a finite field k 
of characteristic different from p, and let J be its Jacobian variety. Then 
ƒ is an abelian variety of dimension g, also defined over k. If we write 
J poo for all points of /?-power order on J over the algebraic closure k9 then 
as a group Jpoo = (Qp/Zp)

2g. The Galois group Gal(A:/A:) acts O n t/noo , 

and Ga\(k/k) has a canonical generator y, the Frobenius automorphism. 
Weil proved that the characteristic polynomial of y acting on the dual 
Jpoo = Hom(Jpoo,Qp/Zp) is the polynomial giving the L-function of C 
over k. 

How can one develop an analogue of this situation starting with a num­
ber field K instead of a curve C? Iwasawa gave at least a conjectural 
answer, which we will describe in the special case K = Q, p > 2. First, 
he observed that the extension of scalars from k to k (which is obtained 
by adjoining roots of unity) should correspond to the infinite extension 
F = Q(/ipoo) formed by adjoining all p-power roots of unity to Q. Then 
F is a Zp-extension of the field Q(/f/>). As for an analogue of Jpoo, by 
definition _ 

J{k) = Div°(C)/P(C) 
where Div°(C) is the group of divisors of degree 0 on C over k and P(C) 
is the group of principal divisors in Div°(C). Thus it is natural to try 
replacing Jp00 by the /7-part of the ideal class group of F, that is 

Aoo =l im^ n 

where as above, An is the p-part of the ideal class group of the nth layer of 
the Zp-extension F/Q(/tp). By theorems of Iwasawa and Fererro-
Washington, as a group A^ = (QPIZp)

k where A is the integer from (3). 
Finally, and most importantly, what should be the analogue of Weil's 

theorem in this situation? Both 

r = GaKF/QG^)) s Zp and A = Gal(Q(/rp)/Q) 
act on Aoo. For any character x of A into Z*, we define 

Ax0 = {aeA00:a*= x(S)a for all S e A}. 

For every %, Mx> — Hom(v4^0,Qp/Zir7) is a finitely generated torsion A-
module, so the classification theorem referred to above shows that Â^ 
is pseudo-isomorphic to a module of the form 0A//-A. We define a 
characteristic power series of Â^ to be any generator of the ideal (Y[ ft)A. 
Iwasawa's proposed analogue of Weil's theorem is the following, which 
became known as Iwasawa's Main Conjecture. It was proved only recently, 
by Mazur and Wiles [MW]. 

THEOREM. If x is an odd character of Gal(Q(/ip)/Q), then the p-adic 
L"function Lx is a characteristic power series ofÂ^. 

Here Lx is the element of A which interpolates special values of Dirichlet 
L-functions in the following sense: for every charactery K of finite order 
ofGal(Q(^oo)/Q(^)), 

K(LX) = L(KX-\0). 
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This p-adic L-function was first constructed by Kubota and Leopoldt. Iwa-
sawa gave a new construction using Z^-extensions. This theorem can be 
viewed as a refinement of (1); it has very deep consequences for the arith­
metic of cyclotomic fields. 

The book by de Shalit is not concerned with ideal class groups of cyclo­
tomic fields, but rather with the arithmetic of elliptic curves with complex 
multiplication. As mentioned above, the fundamental conjecture of Birch 
and Swinnerton-Dyer relates the arithmetic of an elliptic curve with the 
behavior at s = 1 of its L-function. In the mid-1970s, Coates and Wiles 
observed that there is a generalization of the 'cyclotomic' Iwasawa theory 
that can be used to attack this conjecture. This generalization, which we 
will now describe, is the subject of de Shalit's book. Fix an elliptic curve E 
with complex multiplication by an imaginary quadratic field K, and sup­
pose for simplicity that E is defined over K. Fix an odd rational prime p 
which splits into two distinct primes p and p* in K, such that E has good 
reduction at p. Instead of the extension of K generated by all p-power 
roots of unity, we will consider the field #00 = K(Epoc), the extension of 
K generated by all p-power torsion points on E. It is not hard to show 
that T = Gal^oo/K(EP)) is isomorphic to ZP9 and A = Gal(K(Ep)/K) is 
cyclic of degree p - 1. 

The Iwasawa module to consider in this setting turns out to be the 
Selmer group ^ of E over Koc relative to powers of p. For the definition 
see for example Chapter IV of de Shalit's book; the important property of 
SQO is that it sits in an exact sequence 

0 - E(Koo)^Kp/^p - Soo - inpoo - 0 

where Kp is the completion of K at p, @p is its ring of integers, and IIIpoo 
is the p-primary part of the Tate-Shafarevich group of E over K^. From 
this exact sequence it is clear that knowledge of Soo a s a Gal(AToo/^)-
module contains a great deal of information about the points on E and 
the Tate-Shafarevich groups of E over all extensions of K in î oo- As in 
the cyclotomic situation, for any character ^ of A into Z*, we define 

S £ = {s e Soo : s* = x(S)s for all S e A}. 

For every %, the dual S*> = Hom(S^, Qp/Zp) is a finitely generated torsion 
A-module, so it makes sense to ask for a characteristic power series of S*,. 
The work of Coates and Wiles led to the following analogue of Iwasawa's 
Main Conjecture; to state it we must extend scalars to J^, the ring of 
integers of the completion of the maximal unramified extension of Qp. 

MAIN CONJECTURE. If LX(E) e -^[pT]] denotes the p-adic L-function 
associated to E and x> and fx is a characteristic power series ofS^, then 
Lx{E)S[\r\\ = fxs[\r\i 

Here LX{E) is the element of -^[[T]] satisfying the interpolation formulas 

Q;1K(LX(E)) = (1 - y/X-lK-x(p)/p)Q-{L(lï7xK, 1) 

for every character K of finite order of K(Epoo)/K(Ep), where Q € C x is 
a period of E, Qp e J*x is a p-adic period attached to E, and y/ is the 
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Hecke character attached to E. The L-function of E is given by 

L(E,s) = L(y/,s)L(!//,s). 

Coates and Wiles, although not able to prove this conjecture, were able 
to use their ideas to prove the following theorem, an important initial step 
in the direction of (2). 

THEOREM. Suppose E is defined over K and has complex multiplication 
by K. IfE(K) is infinite then L(E, 1) = 0. 

In this theorem, as in all other work on this Main Conjecture, the crucial 
link between arithmetic and analysis is provided by elliptic units. Elliptic 
units are global units in abelian extensions of K, defined by analytic for­
mulae. As global units they are related to properties of abelian extensions 
ofK, and thereby to the arithmetic of E\ being defined analytically they 
are related to special values of Hecke L-functions. 

The book by de Shalit provides, for the first time, a comprehensive 
survey of this entire field. The first two chapters are concerned with the 
construction and properties of both one-variable and two-variable p-adic 
L-functions attached to Hecke characters of K. These functions were orig­
inally constructed by Manin and Vishik and by Katz, but de Shalit follows 
the different approach of Coates and Wiles, which is more useful for arith­
metic applications. The Coates-Wiles construction uses formal groups and 
elliptic units, thereby relating the p-adic L-functions with arithmetic from 
the start. The third chapter discusses the Main Conjecture and gives some 
evidence for it. The fourth and final chapter uses the results of the previ­
ous chapters to prove the theorem of Coates and Wiles stated above, and 
a partial converse due to Greenberg. 

By combining and in many cases going beyond the existing literature, 
this book makes an excellent reference for researchers in the area. As 
a textbook, or a source for learning the subject, it will be useful more 
for those already familiar with the classical cyclotomic Iwasawa theory; 
others might find it easier to learn the cyclotomic case first, for example 
from the texts of Lang [L] or Washington [W], or Iwasawa's survey arti­
cle [I]. However, the book is largely self-contained and could be read by 
any mathematically-sophisticated reader with some general knowledge of 
number theory. It is well written and organized, and as up-to-date as any 
book can be in such a rapidly changing field. 
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