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Let X be a compact Hausdorff space upon which the real line R acts 
continuously, giving a transformation group or flow, and for x e X and 
t E R, let x + t denote the translate of x by t. We assume throughout 
that the action is strictly ergodic in the sense that it is minimal and there 
exists a unique probability measure on X that is invariant under it. For 
(p G C(X) and x e X, we write cpx for the function on R defined by the 
formula <px(t) = (p{x + t)9 t e R. For x e X fixed, we let <Q3X denote 
the C*-algebra on L2(R) generated by the Hubert transform and all the 
multiplication operators M(Px obtained by letting cp run over C(X) and we 
let XJC denote the compression of &3X to the classical Hardy space H2(R). 
These algebras arise in a number of contexts and have been objects of 
intensive study since the late sixties. (See the references at the end for a 
sampling of the literature.) In this note, we announce our results which 
lead to a description of the AT-theory of these algebras. The algebras 63X 
and %x are closely related and the derivation of their AT-theories involves a 
kind of play off between the two. In order to keep our presentation simple, 
we concentrate our attention on 63*. 

As in shown in [CMX], <&3X does not depend upon x, but only on X. 
However, as defined, <S3X is not congenial for analysis and it is helpful 
to represent it on different Hubert spaces. When [CMX] was written, this 
was not an easy task. The following analysis remedies the situation. Let 
C*(X,R) denote the transformation group C*-algebra associated with the 
flow and let W*(X9R) denote the double dual of C*(X,R). This is a huge 
von Neumann algebra acting on a nonseparable Hubert space, but it is 
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generated by a covariant representation {n,u} of C*(X,R). We write u 
in its spectral form, ut — featdE(À), and we let <&3(X,R) denote the 
C*-subalgebra of W*(X,R) generated by n(C(X)) and E([09oo)). This 
algebra, which is separable if C(X) is, is called the algebra of singular 
integral operators on X and the algebra ofToeplitz operators on X, denoted 
X(Ar, R), is simply the compression of &3(X, R) to the range of £([0, oo)). 
Finally, we write %?(X,R) for the commutator ideal in <S3(X,R). 

THEOREM 1. The algebra fê{X,R) is a simple C*-algebra that contains 
C*(X,R) properly. The quotient &3(X>R)/<ë'(X,R) is canonically isomor­
phic to C(X) © C(X) and any representation of &3{X, R) that does not 
annihilate W(X,R) is faithful. In particular, the map that sends n((p) to 
M9x and 2s([0,oo)) to the projection of L2(R) onto H2(R) extends to an 
isomorphism from <ö3(X,R) onto <&3X. 

When one views C*(X, R) as the C*-algebra of the foliated space deter­
mined by the flow, it is clear that &3(X, R) is related to Connes' C* -algebra 
of order zero pseudodifferential operators on the foliated space [Cl,2]. The 
difference between his algebra and ours is that his operators have singular­
ities that are compactly supported in the leaf direction, while ours don't. 
Remember, the Hubert transform has a singularity at zero and at infinity. 
This difference is something of a mystery. It is interesting in its own right, 
but it also intrudes in annoying ways in applications. In the literature the 
difficulties with &3(X,R) have been circumvented using a somewhat ad 
hoc truncation process to eliminate the singularity at infinity (cf. [Cl,2, 
Dl,2, DHK1,2, FS, JK, R and X]). 

We calculate the J^-theory of &3(X9 R) using another representation in 
which the truncations can be monitored. Let L2(m) be the L2-space on X 
built with the unique invariant probability measure m and let H2(m) be 
the closure in L2(m) of all the functions (p in C{X) with the property that 
(px belongs to the classical Hardy space H°°(R) for each x in X. Then the 
map which sends n((p) to multiplication by cp on L2(m), cp e C(X), and 
2s([0,oo)) to the projection from L2(m) onto H2(m) extends to a faithful 
representation of 63(AT,R) on L2(m). Careful analysis of the operators in 
the image of &3(X9 R) on L2(m) yields the following theorem which was 
first proved by Ji and Xia [ JX] under the assumption that X is a quotient 
of the Bohr group with R acting in the usual way. Their techniques of 
proof rely very heavily on the theory of almost periodic functions and are 
quite different from ours. 

THEOREM 2. The inclusion mapping, j : C*(X,R) —• ^(X.R), induces 
an order isomorphism 

j\:Ko(C*(X,R))^Ko(&(X9R)) 

and a short exact sequence 

0 -+ KX(C*(R)) h Ki(C*(X,R)) h Ki(&(X,R)) -> 0 

where i is the canonical embedding ofC*(R) into C*(X,R). 

With this and Connes' analogue of the Thorn isomorphism [C3], the 
first pair of assertions in the next theorem are immediate; the second pair 
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are proved in the process of proving Theorem 2; and the third pair are 
easy consequences of the second. 

THEOREM 3. 

(b) Ki{&(X,R)) c* K°(X)/Z[l], where [1] denotes the class of the trivial 
line bundle on X. 

(c)*o(X(X,R))^Z. 
(d)*!(X(*,R) = 0. 
(e)K0(ed(X,R))~Z®K°(X). 
(f)K{(63(X9R))^Kl(X). 

Another representation of &3(X, R) on the L2-space of the graph of the 
foliation determined by the flow, i.e., the representation of &3(X,R) in 
the group-measure von Neumann algebra determined by the flow and the 
measure m, is used to prove 

THEOREM 4. Up to scalar multiples, the C* -algebra &(X, R) has a unique 
trace. It is induced by m. 

Theorems 2 and 4 imply the uniqueness of the index theory developed 
in [CMX] which, in turn, generalizes the results in [CP, CDSS and GF]. 

While the hypothesis that our flow is strictly ergodic may seem some­
what technical and perhaps a little excessive—the assumption of minimal­
ity only would be aesthetically more pleasing—it seems to intervene in our 
proofs frequently and in essential ways. It is used to show that a number 
of mean values that we have to compute actually converge uniformly for 
functions in C(X). 
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