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In the preface of their book, Garcia-Cuerva and Rubio de Francia say: 
"After the classical monograph of A. Zygmund [31], the standard refer­
ences for the important developments that occurred in Fourier Analysis 
during the second half of this century are E. M. Stein [25] and Stein and 
Weiss [29], both published around 1970." Since that date there have been 
dramatic advances in several areas of Harmonic Analysis. We shall de­
scribe some of these. We begin with the Theory of Hardy spaces and shall 
present a more elaborate description of this development since we can use 
some of the material presented to help explain the progress made in other 
areas. 

Classical Harmonic Analysis in one dimension is either associated with 
the Real line R or the Torus T= [0,2%), often identified with the Circle 
Group {z € C: z = eie, 0 < 6 < lit). Let us concentrate on R, which we 
consider embedded in R2 (or C) as the boundary of the Upper Half Plane 
R2 = {z = (x, y) e R2: y > 0} = {x + iy e C: y > 0}. If 0 < p < oo the 
Hardy Space Hp consists of all holomorphic functions F(x + iy) on R̂_ 
such that 

\F(x + iy)\'dx\ <oo. 
-oo J 
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These spaces are related to the Lebesgue spaces LP(R) via the following 
theorems: 

EXISTENCE OF BOUNDARY VALUES. If F e Hp then lim^—o^C* + iy) = 
F(x) exists for almost every x e R. Moreover, ifO<p< oo, then l im^o X!^, \F(x-\-
iy)-F(x)\pdx = 0. 

When 0 < p the real part, u(z), of F(z) converges, as y -+ 0, to a 
real valued function ƒ (x) on R that belongs to Lp. When 1 < p < oo one 
can obtain a converse result: if ƒ is a real valued function in Lp then the 
function on R^ defined by 

(2) F(z) = u(z) + iv(z) = ± r M-dt 
n /.oo z - t 

belongs to Hp
9 the real part of its boundary value equals ƒ (x) a.e. and the 

mapping ƒ —• F is a bounded linear transformation. 

THE M. RIESZ INEQUALITY. Iff e LP(R), 1 < p < oo, and F is given 
by equality (2) then \\F\\HP < Ap\\f\\p, where Ap is independent off. 

Thus, for this range of /?, one can assign to each ƒ e LP(R) the Hp-
norm of the associated function F (via equality (2)) and one obtains a 
norm equivalent to the Lp-norm. This is sometimes stated simply by the 
assertion that "real Hp equals real Lp when 1 < p < oo." When p = 1 there 
exist real valued functions L1 that are not the real part of boundary values 
of an F G H1. That is, "real H[ is a proper subspace of real L1." This is 
also reflected by the fact that the constant Ap in the M. Riesz inequality 
behaves like l/(p - 1) as p —> 1. 

When 0 < p < 1 the situation is more complicated. Even though the 
boundary values F(x) exist a.e., the real parts f(x) no longer determine 
the holomorphic function F on R̂ _. The proper interpretation of these 
boundary values involves distributions and not functions; thus, the space 
"real Hp" for p < 1 is an appropriate space of (tempered) distributions. It 
is not a Banach space since the functional in (1) is not a norm; however, 
it is a "quasinorm" (Minkowski's inequality is replaced by a similar one: 
\\a + b\\ < K(\\a\\ + ||6||) with K = K(p) > 1) and it turns Hp into an 
interesting topological vector space that is not locally convex. For details 
about the classical theory of Hp spaces see [31 and 16]. 

One can, however, consider many of these notions without using an­
alytic functions. The boundary values of the imaginary part of an F in 
Hp can be expressed directly in terms of the Hubert Transform of the 
boundary values of the real part ƒ : 

(3) f(x) = (Hf){x) = lim I / ttïftl dt 

(formally, this is the integral in (2) with Im z = 0). A reformulation of the 
M. Riesz inequality is that the limit defining ƒ exists a.e. when ƒ G Lp, 
1 < p < oo, and is a bounded operator. This limit does exist when p = 1; 
however, it does not define a bounded operator o n ! 1 . Real Hp, then, 
is the space of all those ƒ € Lp whose Hubert transform belongs to Lp. 



200 BOOK REVIEWS 

When 1 < p < oo these two spaces are the same; when p = 1, Hl is a 
proper subspace of Ll. 

Around 1950 there was a great impetuous to develop Fourier Analysis 
in higher dimensions. This was created in large part by Calderón and Zyg-
mund through their study of singular integrals (which we shall describe 
below). The push was accompanied by extensions of the theory of Hardy 
spaces to several dimensions. There are several more or less obvious set­
tings for such generalizations: (i) the unit disk can be replaced by its «-fold 
Cartesian product, the Polydisc. Holomorphic functions of one variable are 
then replaced by holomorphic functions of several variables and Fourier 
series are replaced by multiple Fourier series; (ii) the unit disk can be 
replaced by the unit ball in Cn. Again, Hardy space theory involves holo­
morphic functions of several complex variables; the boundary of the ball, 
however, does not enjoy some of the features of the circle group (when 
n = 2 this boundary can be identified with the group SU(2); but it is not 
a group when n > 2); (iii) in the noncompact case there are parallel di­
rections. The «-fold Cartesian product of R leads to a theory similar to 
the one associated with the polydisc. There are many other directions and 
approaches that have been developed in the twenty year period following 
1950. Some of these are considered in the articles [7, 30 and 12]. 

There is one «-dimensional extension of Hp theory, however, that in 
addition to being natural, fits in particularly well with later developments. 
It is based on the following elementary facts about analytic functions of a 
complex variable. Suppose that F — u + iv is such a function defined on 
a simply connected domain Q c C . Then the Cauchy-Riemann equations 
ux = vy, uy = -vx tell us, first, that (v, u) is the gradient of a function 
h on Q and, second, that Ah = 0 (that is, that h is harmonic). Thus, 
one can consider gradients of harmonic functions on a domain Q c R " 
to be extensions of the notion of a holomorphic function on a domain 
in R2(= C). In view of this observation and keeping in mind the defini­
tion of Hardy spaces induced by condition (1) we can consider the fol­
lowing spaces to be an extension of the spaces Hp to n dimensions. Let 
F = (v\,V2,...,vn,u) = (V,u) be a mapping from the Upper Half Space 
R£+1 = {(xi,x2,...,xn,y) = (x,y) e Rn+l: y > 0} onto R"+1 satisfying 
the Generalized Cauchy-Riemann Equations 

(4) m — + Y ^ = o (ii)^i = ^ ^i=du_ 
W W dy ^ ^ dxj ' w dxk dxj ' dy dxj 
for j , k = 1,2,..., n. We say that such an F belongs to the space Hp(Rn), 
p > 0, if and only if 

(5) \\F\\„, = s u p { / \F(x,y)\'dx} < oo. 
y>0 UR« J 

These spaces were introduced in [28]; there it was shown that many of the 
properties of the classical Hardy spaces are valid for these n-dimensional 
extensions. For example, the boundary values 

F(x) = (v\(x)tV2(x),...,vn(x),u(x)) = \im F(x,y) 
y-*0 
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exist for almost every x e R" as well as in the Lp norm, provided p > 
(n-l)/n (for lower values of the index p, one has to consider more general 
versions of the Cauchy-Riemann equations [28, 6, 29]). As is the case when 
1 < p < oo, the boundary function u(x) is the general element of Lp(Rn) 
and it uniquely determines the boundary values of the "conjugates" Vj(x), 

(6) Vj(x) = (Rju)(x) = l ime / u(x - Orifer dt 

e~*u J\t\>e \L\ 

Rj is a natural extension of the Hubert transform (compare with (3)) and 
is called the yth Riesz Transform (it was M. Riesz who first considered this 
«-dimensional version of the Hubert transform). 

Though many other properties of the one dimensional spaces were ex­
tended to these higher dimensional analogs, some basic questions were 
not resolved. In fact, many were unresolved even in the one dimensional 
case. We have seen how the spaces Hp correspond to the boundary spaces 
Lp when 1 < p < oo. A natural problem is to characterize the subspace 
of Ll(R) consisting of the real parts of boundary values of functions in 
Hl(R\). Another question is: What is the dual of this subspace of L1? 
Once these problems are resolved one can then consider their natural ex­
tension to R", n > 1. In the decade 1970-1980 there occurred many major 
breakthroughs in the theory of Hardy spaces; in particular, the solutions 
of the above questions were obtained. 

Burkholder, Gundy and Silverstein [1], using probability theory meth­
ods, characterized the harmonic functions u(x,y) on R^ that are the real 
parts of functions in Hl. Let 

u*(x) = sup \u(w,y)\. 
\w—x\<y 

They showed that u is such a function if and only if u* e Ll(R). 
C. Fefferman and Stein [18] extended this result to n dimension for the 
Hardy spaces associated with R++1 we described above. At just about the 
same time, C. Fefferman identified the dual of Hl with the space of func­
tions of Bounded Mean Oscillation (BMO) that was introduced a few years 
earlier by John and Nirenberg [21]. Fefferman and Stein extended this re­
sult to the «-dimensional case. Appropriate versions of all these results 
extend to the case p > 0. 

Another important breakthrough was the discovery by Coifman of the 
Atomic characterization of the spaces [8]. An atom is, simply, an Ll(R) 
function a(x) that is supported in a finite interval /, and satisfies the size 
and cancellation conditions 

(8) (i) |A(JC)| < 1/1(1) and (ii) fa(x)dx = 0, 

where 1(1) is the length of / . It is an easy exercise to show that the Hubert 
transform a(x) satisfies ||â||i < 7. Thus, an atom belongs to real Hl and 
\\a + iâ\\Hi « ||<z||i. It follows that any function of the form 

oo 

(9) f = J2À"a"-
1 
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where the an
ys are atoms and J2T W < °°> m u s t a^so belong to real Hl. 

Coifman showed that all functions ƒ in this space have this form and that 
the expression inf X) |A«|, where the infimum is taken over all representa­
tions of the form (9), defines a norm that is equivalent to the Hl norm of 
ƒ + if. This characterization of real Hl in terms of these simple building 
blocks, the atoms, extends to the n dimensional case and to the spaces Hp, 
0 < p < 1. Moreover, the notion of an atom makes sense on any metric 
space that is endowed with a measure (spheres play the role of intervals 
and, in (8) (i), /(/) is replaced by the measure of the sphere); thus, the 
definition of an Atomic Hardy Space can be given by considering functions 
having the representation in (9). Much of harmonic analysis can be carried 
out on such metric spaces, where the metric is related to the measure ju by 
the inequality __ 

p{S)<Kp(S). 
where S is a sphere, S is the sphere (with same center) of radius twice the 
radius of S and K is independent of S. Such spaces are known as Spaces 
of Homogeneous Type (see [9, 11 and 12]); they include a large class of 
settings in which harmonic analysis has been studied. 

Another area that has seen considerable development recently is the 
study of the Calderón-Zygmund Operators. In 1952 [5] Calderón and Zyg-
mund introduced certain convolution operators that extended the Hubert 
transform to n dimensions. These operators, the Calderón-Zygmund Sin­
gular Integral Operators, which include the Riesz transforms (6), have the 
form 

(10) (Tf)(x) = lim / f(x - y)j&L dy, 

where ft is homogeneous of degee 0 (il(px) — Cl(x) when p > 0 and 0 ^ 
x eRn) and, thus, can be considered to be a function on the surface Sn~{ 

of the unit sphere in R"; moreover, ft satisfies the cancellation property 

(11) f ft(x/)rf(T(jC,) = 0, 

where a is the Lebesgue surface measure on 51""1 and x' e Sn~l. When 
n = 1, condition (11) is equivalent (up to a multiplicative constant) to 
ft(x) = sgnx and, thus, (10) is the Hubert transform. Similarly, Q(t) = 
cntjl\t\ gives us the yth Riesz transform (6). 

Calderón and Zygmund first focused their attention to the study of the 
behaviour of these operators on the spaces Lp(Rn), 1 < p. They did this 
by introducing the Calderón-Zygmund Decomposition of an Ll function 
into the sum of an L2 function and a series of oscillating terms supported 
by a set of "small measure." The latter is a countable union of disjoint 
cubes that support each of the oscillating terms (these oscillatory terms 
are the precursors of the atoms we described above). The basic features 
of this program are the following: (i) The L2 theory is easily obtained by 
applying the Plancherel theorem and using the Fourier transform m{Ç) of 
Q(y)\y\~n; (ii) appropriate (weak-type) estimates are obtained for Tf, for 
ƒ e l 1 , using "mild" hypotheses on the kernel K(x, y) = Q(x-y)\x-y\~n; 
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general interpolation theorems (the Marcinkiewicz theorem) gives us Lp 

boundedness, 1 < p < 2, from (i) and (ii); finally, duality gives us the 
results when 2 < p < oo (here we use the fact that convolution operators 
are "selfadjoint"). 

These operators can be used to study partial differential equations. It 
is not hard to give meaning to and to obtain the formula for the Riesz 
transforms 

(12) Rj = - < 4 ( - A ) - " . 

where A is the Laplace operator. Calderón [3] used such formulae to study 
the uniqueness of the Cauchy problem. Such considerations involve the 
composition of two such operators with kernels Clj(y)\y\~n, which corre­
sponds to multiplication of their Fourier transforms m/(£), j = 1,2. This 
may destroy the mean zero property (11). By throwing in the identity 
operator one obtains an algebra that can be used for obtaining estimates 
for partial differential equations of elliptic type with constant coefficients. 

In order to study partial differential equations with variable coefficients 
Calderón and Zygmund introduced extensions of their singular integral 
operators that are no longer of convolution type: 

Tf (x) = lim[ K(x,y)f(y)dyf 

where the kernel has the form K(x, y) = L(x,x-y) and satisfies a smooth­
ness condition as well as the homogeneity and cancellation properties: 

(a) L(x, kz) = À~nL(x, z) for À > 0, x e Rn and 0 ± z e R"; 
(b) /5„_, L(x, z') do(z') = 0 for each x. 

Their technique was based on representing these kernels in the form 

L(x9z) = ^2mj(x)Hj{z)9 

where the Hj are spherical harmonics, so that these operators can be 
studied in terms of convolution operators followed by multiplications by 
(smooth) functions. At about the same time, Kohn and Nirenberg [23] 
arrived at a class that includes such operators, which they called Pseudo 
Differential Operators. 

Other extensions of the Calderón-Zygmund operators were introduced 
in the sixties. For example, Calderón studied the Cauchy integral of an L2 

function on a Lipschitz curve in R2. An example is 

( 13) Tf(x) = lim-U H , x ^\—-dy, 
e-o 2ni y.oo z(y) - z(x) - ie y 

where z(x) = x + iA(x) with A' G L°°(R) (with sufficiently small norm). 
In all these cases, because we are no longer dealing with convolution 

operators, L2 theory, via the Plancherel theorem, is no longer available. 
In fact, it is a nontrivial task to obtain the L2 boundedness for these 
operators. We now know that we can rely on the properties of the limiting 
spaces obtained as p -+ oo and p -» 1 (BMO and Hl). It is interesting to 
note that, before this was understood, Calderón [2] did, indeed, obtain the 
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L2 boundedness of the operator T in (13) by very clever use of the tools 
known at the time (this was a real "tour de force.") 

Coifman and Meyer in the early seventies began a systematic study of 
these more general operators, which they called Calderón Zygmund Op­
erators (CZO) [10]. These belong to the class of linear transformations 
mapping test functions (C°° functions with compact support in R") into 
distributions. Any such operator T has a (distribution) kernel K(x, y) such 
that 

{Tq>,v) = (K{x,y)<p{x)My)) 
for all test functions <p and y/. T is a CZO if this kernel is "represented" 
by a continuous function onR" x R" - {(x, y) : x - y} so that 

Tcp(x)= [ (p{y)K{xty)dy 
JR" 

if x 0 Suppç?. Moreover, K satisfies certain "standard estimates" an ex­
ample of which are 

(a) (size condition) \K{x, y)\ < C\x - y\~n. 
(b) (smoothness condition) there exist e > 0 such that if 2\xf - x\ < 

\x - y\, then 

\K{x, y) - K(x', y)\ + \K(y, x') - K(y, x)\ < \x' - x\e\x - y\-(»+£\ 

as well as a general functional analytic condition, called "the weak bound­
edness property," that is weaker than L2 boundedness. They showed that 
these operators are bounded on L2 (as well as many other spaces) and in so 
doing provided a unified approach to their study. Their work culminated 
in a celebrated theorem of G. David and J.-L. Journé [14]. 

THE Tl THEOREM. A Calderón-Zygmund operator T is bounded on 
L2(Rn) if and only ifTl and T*l belong to BMO. 

(T* is the adjoint of T and it is not hard to show that the domains of T 
and T* can be extended in a natural way to include the function 1.) Even 
more recently, David and Journé, together with S. Semmes, extended this 
result to spaces of homogeneous type [15]. This represents, therefore, a 
unification of many of the ideas and results that are involved in this de­
velopment of Harmonic Analysis that has taken place during the seventies 
and eighties. 

Many other areas of harmonic analysis have experienced similar devel­
opments during the past two decades. Let us list and describe them briefly. 

WEIGHTED NORM INEQUALITIES. Such inequalities have the form 

(14) j \Tf(x)\ew{x)dx<C j \f(x)\Pw{x)dx, 

where, for example, T is one of the singular integrals we discussed above, 
or a maximal function, and C depends only on the weight w and p. Such 
inequalities arise naturally. For example, Hp spaces can be associated 
with general domains in C and their study leads to the study of opera­
tors analogous to the Hilbert transform, acting on functions defined on 
the boundaries. Estimates involving such operators can often be reduced, 
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via a change of variables, to estimates for classical operators on the line 
(or the torus) that involve a measure of the form w(x) dx (w, in such a 
case, is the Jacobian associated with the change of variables). Calderón's 
original proof of L2 boundedness of the operator T in (13) involved pre­
cisely such estimates. The classical Helson-Szegö theorem characterizes 
those weights w for which the Hilbert transform is bounded on L2. It 
turns out that weights for which inequalities such as (14) are valid have 
close connections with BMO functions: roughly speaking, the logarithms 
of such "good weights" belong to BMO. The study of such inequalities and 
their applications has been one of the very active areas of research during 
the last twenty years. 

VECTOR VALUED INEQUALITIES. The definition of many operators that 
arise in Harmonic Analysis can be extended to Banach space valued func­
tions. One can then ask if, by replacing absolute values by norms, one 
obtains inequalities that are analogous to the classical ones. It turns out 
that there is a strong connection between such inequalities and weighted 
norm inequalities. Many estimates for nonlinear operators that are im­
portant in Fourier analysis can, very often, be reformulated as estimates 
for linear operators whose range consists of vector-valued functions. For 
example, this has long been known to be the case when the operator in 
question is the "Littlewood-Paley ^-function." Furthermore, vector val­
ued inequalities are very important in that area of Harmonic Analysis that 
is associated with probability theory. 

There are other topics that have seen considerable activity recently. We 
have mentioned a connection between partial differential equations and 
harmonic analysis. There are many other such connections that involve 
not only harmonic analysis but geometry and several variables as well. For 
example, those working on the d problem draw from these last two areas 
and are interested in estimates that have much in common with some that 
we have mentioned. 

Finally we would like to point out that, most recently, there has been 
a considerable unification in the study of the various topological spaces 
that occur in analysis such as the Lebesgue spaces, Hardy spaces, Lip-
schitz spaces, and Sobolev spaces. This is being done by the construction 
of "spanning systems" of elementary functions, much in the same spirit 
as atoms span the Hardy spaces. This area has been developed, on the 
one hand, by Coifman, Meyer and their school and, independently, by 
the collaboration of Frazier and Jawerth. Some of these systems, called 
wavelets, also enjoy many of the properties of orthonormal bases. A (yet 
unpublished) book on wavelets by Y. Meyer [24] presents this material and 
its application to the various topics we have discussed. The approach of 
Frazier and Jawerth is described in [19, 20]. 

Before commenting on the two books being reviewed, it may be help­
ful to point out that, in addition to the references already cited, there 
are several excellent expository articles that deal with the topics we have 
mentioned. We cite the articles in various Proceedings of the International 
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Congress of Mathematics that were written by Calderón, Stein, C. Feffer-
man and G. David [4, 26,17,13]. Other excellent sources are the book by 
Journé [22] and the book edited by Stein [27]. 

The first half of the book by Garcia-Cuerva and Rubio de Francia is 
an exceptionally well written presentation of much of the theory of Hardy 
spaces we have touched upon. Their approach is elegant and very well mo­
tivated. The last half is devoted to weighted norm inequalities and vector 
valued inequalities. This is an area in which Rubio de Francia has made a 
most important contribution and is also exceptionally well written. More­
over, the presentation gives a beautiful unification of all these topics. This 
book represents considerable effort by two researchers having complete 
control of their material. It should serve as an example to be emulated for 
those writing an advanced text in any subject of mathematics. 

The book by Torchinsky covers more ground than the book by Garcia-
Cuerva and Rubio de Francia. Though it begins on an elementary level, 
it covers many topics that have appeared only recently in the literature 
(such as some aspects of the theory of Calderón-Zygmund Operators and 
boundary value problems on C1 domains). It is a useful source for many 
of the topics that we have touched on in this review. 
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This work has been set forth in two volumes. The first volume is de­
scribed as Basic results and the second Supplementary notes and references. 
The title Correlation theory of stationary and related random functions in­
dicates that the exposition does not attempt to discuss general aspects of 
the study of stationary processes but rather confines itself to the impor­
tant but more limited aspect dealing with first and second order moment 
properties. 

The object apparently is to give a direct development of results on a 
heuristic basis supplemented by illustrations in terms of applications and 
graphical representations in the first volume. The second volume consists 


