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The central problem in knot and link theory is to distinguish link types 
via computable invariants. Figure 1 shows an example, for 75 years the two 
knots in Figure 1 were thought to represent distinct knot types, until in 1974 
it was discovered that a totally unmotivated but very simple change in the 
projection takes the left picture to the right [P]. If we cannot find such a 
change, how can we be sure that two knots are distinct? 

FIGURE l 

This review was written when the author was visiting the University of Paris VII. Partial 
support and the hospitality of the Mathematics Department during that visit are gratefull 
acknowledged. 
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A link K in 3-space is a subset of S3 which is diffeomorphic to the disjoint 
union of r copies of S1. If r = 1 it is a knot. Two links K, K' are equivalent 
if there is a diffeomorphism h of the pair (£3 ,K) onto the pair (6'3,K /), the 
equivalence class 3? being a link type (Add orientations to S3 and or K to 
get slightly different concepts). The unlink %(r) is the link type which is 
represented by r disjoint planar circles U(r). Since knot complements are 
easily visualized and are at the same time highly nontrivial examples of 3-
dimensional manifolds, they are interesting and important objects of study. 

This is a particularly good moment for the publication of two new graduate 
level textbooks on knots and links. The subject has undergone dramatic 
changes during the past ten years, which both build upon the classical theory 
and depart from it. I have in mind, first, the introduction of geometry (and 
in particular hyperbolic geometry) into the subject by Thurston in the early 
1980s [Thl and Th2]. Second, I am thinking of the discoveries in 1984 of vast 
new families of polynomial invariants of knots and links by Vaughan Jones, 
via the braid group and Hecke algebras [J]. I am also thinking of recent hints 
(see [J, Kal , F]) of connections between knot and link theory and physics, in 
particular statistical mechanics. Finally, I am thinking that questions relating 
to the computation of knot related invariants have received much attention 
recently, because they are both interesting and accessible (see, for example 
[Th3]). The two books under review will therefore be welcome to graduate 
students and to research mathematicians who seek entre into the subject and 
need to learn what is known. 

Burde and Zieschang's Knots will be prized as a reference source. Its 
bibliography is scholarly and extensive and is cross-referenced in a manner 
worthy of the computer era, with separate author and subject indexes that 
are first rate. The selection of topics is good and the development is interesting 
and logical. For example, fibered knots are introduced very early in the text. 
Since the Alexander polynomial of a fibered knot is easily understood, whereas 
its meaning is somewhat more elusive for arbitrary knots, this seems to me 
to have been a wise choice. Each section ends with careful historical notes. 
The tables in the Appendix contain some useful data not readily available 
elsewhere (e.g., classical signatures and Seifert matrices for the knots up to 
10 crossings). The style is, however, sometimes ponderous; for example in 
many places there are florid Gothic characters decorated with tildes, hats, 
and multiple subscripts and superscripts, making the book unattractive for 
browsing. 

Kauffman's On knots is a completely different sort of book. It is informal 
and chatty, and very pleasant for browsing. There are lots of wonderful il­
lustrations and a wealth of detail from the author's bag of tricks, gathered 
over the years, relating to the combinatorics of knot diagrams and also to 
Seifert pairings, cobordism, signature invariants (several different ones), the 
Arf invariant, and the ubiquitous Alexander polynomial. There are many 
challenges to the reader to explore combinatorial patterns, which makes the 
book stimulating. There is also an Appendix that brings it up to date with 
a brief discussion of the new knot polynomials and a table giving values of 
the author's L-polynomial for knots up to 10 crossings. It is not, however, 
the sort of general reference text that Burde and Zieschang's book will be, 
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for two reasons. First, its style is very informal (for example there isn't even 
an index); second the coverage reflects very much the author's very particular 
point of view on the subject, at the center of which lie the beautiful patterns 
in knot diagrams. Thus the two books really complement each other and have 
minimal intersection. 

We should mention that neither book contains any hint of the role of 
Thurston's theory of geometric structures in 3-dimensional topology. For 
example, the Montesinos links that are studied in Chapter 12 of Burde and 
Zieschang's book are a special case of arborescent links. The latter have a 
beautiful and simple description (via Thurston's work) in terms of the geom­
etry of their 2-fold covering spaces, but there is no hint of it in the text. It is 
also a pity that Thurston's study of the complement of the Figure eight knot 
[Thl] is not discussed in either book. A text on knot and link theory that 
gives an accessible introduction to geometric aspects of the subject is yet to 
be written. 

The historical development of the subject of knots is interesting. Systematic 
efforts to classify knots began around 1870, the initial motivation coming 
from physics. The distinct chemical elements had been conjectured by Lord 
Kelvin to be related to knotting in the vortex lines of the ether, and the 
scientific papers of the Scottish physicist Peter Guthrie Tait [Ta] laid out 
a program of study based upon these ideas. These ideas seem remarkably 
sophisticated, and not very far from current thinking about quantum gauge 
field theory. Tait's hope was evidently that stability requirements (perhaps 
a restriction to alternating knots?) would impose restrictions on the knot 
types that could occur. The first step in his program was the collection of 
empirical data, and for thic he enlisted the help of Thomas P. Kirkman [Ki], 
C. N. Little [L], and Mary Haseman [H]. Together, they assembled the first 
tables of knots, which have been used ever since, and can be seen, modulo 
surprisingly few corrections, at the end of both of the books under review. 
The measure of complexity that they used in their list of distinct knot types 
is the minimum number of crossings, among all possible planar projections of 
a knot. Empirical data is of course at the heart of any subject, and so this set 
of painfully assembled data has had an enormous impact on the subject. For 
example, a large number of the knots of low crossing number are alternating, 
have two bridges, and exhibit symmetries, and no doubt one of the reasons 
that these topics have been studied in depth in the literature is that the 
available data suggested the existence of structure. 

Tait's hope was that he would discover invariants of knot type in the process 
of assembling data, but to his surprise and disappointment he was unsuccess­
ful. One of the truly remarkable developments during the past few years is 
that the Jones polynomial [J], discovered in 1984, could have been discovered 
by Tait, Kirkman, Little, and Haseman, if they had only had the help of Louis 
Kauffman [Ka2]! We now explain Kauffman's methods. 

We can think of our knot or link type 3? (as those earliest knot theorists 
did) as defined by a diagram, i.e., a projection onto a plane, the multiple points 
being a finite number of transverse double points, with a marker to indicate 
the overcrossing strand. A small amount of experimentation (or a proof based 
upon the use of polygonal representatives) should convince the reader of the 
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reasonableness of a theorem of Reidemeister [R] : the three "moves" depicted 
in Figure 2, applied repeatedly, suffice to take any one diagram of a knot to 
any other. Thus, if one had a candidate for an invariant of knot type it would 
suffice to prove that it was invariant under Rl, 2, and 3. 

3C ~~)C 

Rl 

R2 

R3 

FIGURE 2 

With some foresight, Tait might have been led to look for a polynomial 
invariant. We denote the diagram that defines J£ by K and the hoped-
for polynomial by (K). Initially K will be assumed to be unoriented. The 
proposed variables will be denoted a,b,c, Since crossing number is our 
measure of complexity, it is natural to ask how the proposed invariant ought 
to change when we delete crossings. There are two ways to do this, so our 
first axiom is: 

(i)(X)=a()()+bH, 
where the diagrams in question are assumed to be identical everywhere except 
in the indicated regions, where they differ in the manner shown. Note that 
rule (i) implies: 

(i)'(X) = 6 ( ) ( )+aH 
because we can't distinguish the left-hand sides of (i) and (i)' without adding 
orientations. It's immediate that (K) will be an integer polynomial in a, b, 
and c and (U(r)). 

Let O denote a Jordan curve in the plane and let "O U K" denote its 
disjoint union with a nonempty diagram K. Our next axiom is 

(ii) ( O u K ) = c(K) if K ^ 0 , or 1 if K = 0 . 
Axioms (i) and (ii) determine (K) unambigously, on all link diagrams. 

Let's apply Reidemeister's moves and see what happens. A simple appli­
cation of the axioms shows that: 

(33:) = abQQ + (abc + a2 + b*)(>i). 

This shows that for Rl to hold we'll have to set b = a - 1 and c = —a2 — a - 2 . 
A miracle then occurs, for R3 holds without any further specializations. (The 
check is left to the reader.) The effect of Rl, however, is nontrivial. There 
are two cases, depending upon the sense of the added loop. In one case (K) 
is multiplied by —a3, in the other by —a -3. To correct for this invariance, we 
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follow Kauffman, and declare the link to be oriented, and regard all previous 
work as having defined a pre-invariant by simply forgetting the orientation. 
For an oriented link, the diagram K has a well-defined algebraic crossing 
number w(K). It is then a simple matter to show that if one replaces (K)by 
/ K ( Û ) = (—a)-3t/;(K) (K), then / K ( « ) is invariant under all three Reidemeister 
moves, and so is an invariant of link type! The invariant / K ( « ) is (up to a 
change in variables) the Jones polynomial [J], as it was rediscovered in [Ka2]. 
It does a very good job of telling knots and links apart, and would have 
enabled Tait and his co-workers to reduce years of work into a few days of 
calculation. 

CD <Sb 
f (A) = -A~2 - A-10 f (A) = A~4 + A'12 - A~16 

FIGURE 3 

Replace K by its mirror image K! and you interchange axioms (i) and (i)'. 
From this it follows almost immediately that /KÎ(Û) = / K ( Û - 1 ) - Since the 
Hopf link and the trefoil knot (Figure 3) both have polynomials that are not 
symmetric under the interchange of t and t"1, it follows that neither one is 
amphicheiral, answering one of the earliest questions in knot theory. 

In fact, Jones' invariant was not discovered early in the game, but a some­
what different polynomial invariant was discovered in 1928 by Alexander, 
using methods (see [Al]) that were initially as mysterious as those we just 
described, and that depended similarly upon the combinatorics of knot dia­
grams! It's not an exaggeration to say that a fair fraction of the work during 
the 25 year period that followed Alexander's initial discovery was devoted to 
explaining "the meaning" of his very effective combinatorial invariant. 

To explain Alexander's invariant in a topological setting, we restrict our 
attention momentarily to knots and pass from knot type to the topological 
type of the complement X = Ss — K and thence to its group G = it\X. The 
abelianization of G is Z (generated by the homology class of an oriented loop 
around the knot), so to learn more we pass to the commutator subgroup G'. 
Geometrically, G' belongs to the unique infinite cyclic covering space X of X. 
We let t denote the generator of the group of covering translations, which acts 
on X. Now # i ( X ; Z) turns out to be infinitely generated as an abelian group, 
but it's finitely generated as a Z[t, t~x] module. The latter is not a module over 
a PID (a source of much difficulty); however for practical purposes the theory 
goes through as if it were. The generator of the "order ideal" in our module 
is the Alexander polynomial A(t). It's a Laurent polynomial, and it is unique 
up to sign and a multiplicative power of t, although if you wish this ambiguity 
can be removed [C]. It does a pretty good job at distinguishing knots; in the 
tables mentioned earlier, among the 12965 knot types of at most 13 crossings, 
5639 distinct Alexander polynomials occur. Since the group of a knot and 
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its mirror image are isomorphic, they have the same Alexander polynomial. 
Thus the Alexander polynomial is distinct from the Jones polynomial. (For 
the same reason, the Jones polynomial is not a knot group invariant.) The 
Alexander and Jones polynomial are known to be specializations of a single 
2-variable polynomial [FYHLMO]; however they are independent, i.e., each 
distinguishes knots that the other cannot. 

In a spirit similar to that just used in our description of the Alexander 
polynomial, one can also look at finite-sheeted covering spaces of a knot com­
plement, and at coverings of S3 branched over the knot. Each such covering 
produces a 3-manifold, and the homology of the manifolds so obtained is a 
source of further knot invariants. Other invariants arise when one learns that 
a knot is the boundary of a (highly nonunique) orientable surface, a Seifert 
surface, embedded in S3. The surface places structure on the complementary 
space, and further knot invariants have been obtained by studying such sur­
faces. The ubiquitous Alexander polynomial in fact has an interpretation in 
this setting: one associates to each Seifert surface of genus g a 2g x 2g matrix 
S of integers that records linking numbers of basis curves for the homology of 
the surface, as they are pushed off the surface into the complementary space, 
and finds that A(t) = \S — tSf\. The matrix S is useful for much more than 
this, since its study leads naturally to the various signature invariants, and to 
an investigation of knot invariants which can be understood in the setting of 
4-dimensional topology. Kauffman's book gives a beautiful and gentle intro­
duction to this area. Still further invariants arise via representations of knot 
and link groups onto finite groups and into PSL(2,C). 

We return to the Jones invariant. The Jones polynomial was discovered 
not by the combinatorial methods that we described above, but by quite 
different techniques having to do with braid groups. Most of the recent hints 
at connections between knot theory and other areas of mathematics have to 
do with braids, so we now describe the braid groups. A knot or link K is said 
to be represented as a closed braid if there is an unknotted curve A in S3 — K 
(think of A as the z axis in R3) and a product projection 7r: S3 — A —• S1 

(e.g., use cylindrical coordinates and set ir(z,r, 0) — 0), which is monotonie 
on K. If you choose a closed braid representative, and then split R3 open 
along any half-plane through A you'll obtain an (open) braid representative, 
which lies between two half-planes as in Figure 4. The equivalence relation 
should be obvious: two representatives define the same braid if one can be 
transformed to the other by isotopy in the region between the two copies of 
our half-plane, keeping the ends fixed and without allowing two strands to 
cross one another. Braids can be multiplied by concatenation, rescaling, and 
deletion of the middle plane. This makes braids into a group J3n, in fact into 
a sequence of groups £?i, £?2, £3, 

Every knot and link can be represented as a closed braid [A2, Mo, Y]. A 
pleasant way to obtain such a representative, due to Hugh Morton, is to start 
with an oriented projection K for the link in question, and divide it into 2k arcs 
that are alternately "overpasses" and "underpasses." Now let A be a simple 
closed curve on the plane of projection that separates the set I of all initial 
points of overpasses from the set F of all final points. To obtain a braid axis 
A from A simply "thread" A into S3 — K, using the following rule: traverse 
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FIGURE 4 

K, passing over A each time you cross from the I-side to the F-side, and 
passing under A when you return. (If you're not sure this actually produces a 
braid axis, see [Mo] for further details.) Morton's threading construction has 
a very nice consequence. By examining the various choices which were made 
(e.g., the choice of the diagram, of the overpasses, and so forth) he discovered 
a new and particularly succinct proof of the important theorem of Markov, 
which follows: 

THEOREM ([Be, Bi, Ma, Mo]). Let3§ denote the disjoint union of the 
Bn's, n = 1,2,3, Define a Markov class in 3§ to be the equivalence class 
under the equivalence relation generated by conjugacy in each fixed Bn, and 
the map from Bn to Bn+\ defined by adding one new unknotted loop about A. 
Then there is a one-to-one correspondence between closed braid representatives 
of oriented link types in oriented S3 and Markov classes in 38. 

Markov's theorem shows that the search for link type invariants can be rein­
terpreted as a search for class invariants that behave nicely under Markov's 
map from Bn to -Bn+i- This had been known for a long time, but could not be 
implemented before 1984 for lack of knowledge about any such class invariants. 
All this changed dramatically in 1984, when Jones discovered that the braid 
groups had representations in an ascending sequence of finite-dimensional ma­
trix algebras, and even more that he already had Markov class invariants on 
hand, ready to go. His invariants were the Jones polynomial, which we al­
ready described earlier via combinatorics. The methods used by Jones are 
particularly interesting because they generalize to produce other polynomials 
based upon other representations of the sequence of braid groups, and to sug­
gest many connections between link theory and other areas of mathematics 
and physics. 

Very recently D. Long has shown in [Lo] that there is a very general method 
to produce linear representations of the braid groups. His work makes a 
systematic study of representations of B n now seem possible. To explain his 
idea, the first thing to note is that B n has an interpretation as a subgroup 
of the automorphism group of a free group F n . (The free group occurs as 
the fundamental group of the n-times punctured plane, on which B n acts in a 
natural way.). If one now lets L be any Lie group, then a choice of any n-tuple 
of matrices in L gives a representation of F n . The full representation space 
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R n of F n in L is thus the direct product of n copies of L. The action of B n 

on F n induces an action on R n , so that we can reinterpret B n as a subgroup 
of Diff R n . If one can find a Bn-invariant subspace of R n , the action on the 
tangent space to R n at points of this subspace will yield linear representations 
of B n . His methods give a truly satisfactory connection between the classical 
Burau representation (see [Bu, Bi]) and the new work in [J and B-W], and 
should open up a rich new area of investigation. 

Clearly there is a great deal of interesting work to be done. It is not 
impossible that we already know enough about knots and links and braids 
to be approaching a complete solution to the link problem. The two books 
under review could play a useful role in such a project. 
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In the spring of 1976, G. Andrews was looking through a box of Wat­
son's material in the library of Trinity College when he came across about 
90 sheets of paper, most of them in Ramanujan's handwriting. In 1957 the 
Tata Institute for Fundamental Research had published photostatic copies of 
Ramanujan's early notebooks [2], so Ramanujan's writing was well known to 
Andrews and quite a few others. However very few people would have been 
able to recognize exactly what was in this box in the Trinity library. Andrews 
had written a thesis on mock theta functions, so when he saw that some of 
these sheets contained claims of Ramanujan about mock theta functions, he 
knew this was a major find. These sheets consist primarily of work Ramanu­
jan did in the last 15 months of his life, after he left England and returned 
to India. For the last ten years, Andrews has published a number of papers 
proving results in these sheets, and a few other people have published a little 
more, but the mathematical community at large has not had access to this 
fascinating collection. Thanks to Narosa Publishing House, anyone who wants 
to can now try his or her hand at proving some of Ramanujan's last results. 

Many other fascinating things are contained in this book. There is Little-
wood's letter to Hardy commenting on Ramanujan's second letter. Among 
other perceptive comments in this letter is the following: "I can believe that 
he's at least a Jacobi." 

There are some manuscripts of Ramanujan that were not published before, 
either because of financial problems that the London Mathematical Society 
had, or because they were unfinished. There is a fascinating sheet (p. 358) 
which is undated, but was probably written in 1915. It contains four reasons 
why 

x x 4 x9 

(1)
 + T^i + ( l - x ) ( l - x 2 ) + ( l - z ) ( l - z 2 ) ( l - x 3 ) + " " 

= (1 - x)(l - x6)(l - x11)... (1 - x4)(l - x9)(l - x14) ' * ' 


