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Regular variation can be seen initially as an attempt to define the derivative 
of a real function <\> at infinity. Write the differential quotient {<j>{t + h) — 
</>(t)}/h for h j=- 0. Now instead of keeping t fixed and letting h —* 0, we keep 
h fixed and let t —* oo. If 0 is (Borel-) measurable and the limit exists for all 
h ^ 0, then this limit does not depend on h (since the limit of </>(t + h) — <t>{t) 
satisfies Cauchy's functional equation). Moreover there exists a differentiable 
function <f>o such that </>o{t) — </>{t) —• 0 (t —• oo) and 

lim m = lim *(«+*)-««). 

If ƒ := expo^olog, then ƒ : R+ —• R+ is measurable and the property above 
translates into 

(1) lim 4 ? ^ = *° for all x > 0; 
v y t -oo ƒ(*) 
here a is a real parameter. This is the definition of regular variation. 

It turns out that many properties that hold identically for power func­
tions, hold asymptotically for functions of regular variation. For example the 
relation 

(2) 
lim - L f f(s)ds= lim f tt^-dx 
t-+ootf{t)J0 *-ooy0 f(t) 

= f1 lim !&&dx= f'x^dx^^— 
Jo *-«> ƒ(*) Jo 1 + of 

holds whenever the integrals are finite. In fact relation (2) characterizes reg­
ular variation (except for the integrability), i.e., a regularly varying function 
is precisely a function that is asymptotically of the same order as its aver­
age. Relation (2) suggests that there should be some automatic uniformity 
in relation (1) and indeed this is true on compact ^-subsets of (0, oo). The 
second equality in (2) also holds with the integration interval [0,1] replaced 
by [l,oo). A generalization of both is 
{ 3 ) 

lim TTTvT f°° Hx/t)f(x) dx = lim ƒ fc(x)4^r dx = f°° k(x)xa dx. 
t-*oo *ƒ(*)/o * - W o /(*) Jo 
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This holds under certain conditions on the kernel, e.g., for k(x) = e~x (Laplace 
t ransform), provided the integrals exist, and it leads to the s ta tement t ha t a 
regularly varying function is precisely a function t ha t is asymptotically (for 
t —• oo) of the same order as its Laplace transform (for 11 0). It is clear t ha t 
such a s ta tement is useful in the many si tuations where the original function 
cannot be calculated explicitly bu t the Laplace transform can. 

Most of the results mentioned so far are basically due to J. K a r a m a t a in a 
series of papers in 1930-1933. Some other contr ibutors to the theory before 
1970 are: S. Aljancic, R. Bojanic (part ly publishing in Serbian), N. G. de 
Bruijn, E. E. Kohlbecker and W. Matuszewska. 

An interesting application of this theory in probabili ty theory and a source 
of new problems became available a round 1940 when the convergence of par­
tial sums of independent r andom variables towards stable laws (W. Doeblin) 
and the convergence of par t ia l max ima of independent r andom variables to­
wards extreme-value distr ibutions (B. V. Gnedenko) were characterized. In 
b o t h problems regular variat ion of the tail of the probabili ty distr ibution is 
necessary and sufficient for convergence in most cases. The connection with 
K a r a m a t a ' s theory, however, was made much later, essentially with the pub­
lication of W. Feller's well-known book on probabil i ty theory (1966). 

An ex t ra complication occurring in the theory of stable laws (namely when 
the main pa ramete r is one) and in the theory of extreme value distr ibutions 
(namely in connection wi th the double exponential distr ibution) gave rise to 
the following generalization of the definition of regular variation: there are 
real functions a > 0 and b such t h a t 

(4) h m M ; K) =:xP(x) 
t-*oo a(t) 

exists for all x > 0. If ƒ is measurable , one can prove t ha t ip is necessarily of 
the form 

x1 — 1 
il>(x) = 

7 
for some 7 € R . Moreover, if (4) holds wi th 7 > 0, then ƒ is regularly varying 
(and the other way around) and if (4) holds wi th 7 < 0, then limt-K» ƒ (x) = : 
ƒ(00) exists and the function ƒ(00) — fix) is regularly varying. (Here also 
the converse s ta tement is t rue as well.) The only novelty is the case 7 = 
0 when the r ight-hand side of (4) should be read as logx . For this class 
of functions analogues of all previously mentioned s ta tements on regularly 
varying functions hold. 

Another useful generalization of regular variation is obtained for example 
by requiring t h a t ƒ : R + —• R + is measurable and by replacing (1) wi th 

(5) h m sup—T7~ < 00 
t-KX> J{t) 

for all x > 0. 
I ment ion some simple (nonrepresentative bu t easily unders tood) applica­

tions of regularly varying functions. 



BOOK REVIEWS 331 

Differential equations. Relation (2) can be read as follows: if the real 
function g satisfies the differential equation g'{x) = a(x) • g(x) with a such 
that l im^oo x a(x) exists in (0, oo), then g' and hence g is regularly varying. 
A more complicated result in this direction is the following (due to V. G. 
Avakumovic): if the real function g satisfies the differential equation g"{x) = 
u(x){g(x)}x with À > 1 and u satisfying (1) for some a > 2, then 

lim g{x){x2 • ufây-W-V 
X—•OO 

exists and is a simple positive function of A and a. 

Cesàro convergence. A variant of the above-mentioned decomposition of 
the function <\> is the following, based on the theory around (4): The function 
ƒ (x) converges to M in Cesàro mean (x —• oo) if and only if it can be written 
as ƒ (x) = a(x) + b(x) with the functions a and b satisfying lim^oo a(x) = M 
and f™ t-xb(t) dt < oo (N. H. Bingham). 

Statistics. Suppose (as it is often the case) that a sequence of estima­
tors {Tn} for the unknown parameter 0 of a probability distribution satisfies: 
Zn := y/n(Tn — 0) asymptotically (n —• oo) has a normal distribution. Let 
h be some real function. One may wonder when the sequence of estimators 
{h(Tn)} for the parameter h(0) has a limit distribution (n —» oo). One can 
write 

Wn := an{h(Tn) - h(0)} = an{h(0 + Zn/Jn) - h{0)} 

with {an} a suitable sequence of positive scale constants. For example, let h 
be nondecreasing. One sees that a nondegenerate limit distribution for Wn 

exists if and only if the functions f±{x) := h(0 ± l/x) — h(0) are regularly 
varying and suitably balanced. 

The book under review is a comprehensive account of the theory of regular 
variation, its generalizations and its applications. The book is well conceived: 
important statements receive full emphasis, but for the interested reader there 
is a wealth of side remarks, references to various parts of mathematics and 
variants. Everything is presented in a precise but pleasant way. In most parts 
of the book there is a good balance between generality and attractiveness (this 
cannot always be said about the older book by E. Seneta). One third of the 
book is devoted to applications (in analytic number theory, complex analysis 
and probability theory). If one does not consider Tauberian theorems as an 
integral part of the theory, more than half of the book consists of applications. 
Some of the newer theory could not be covered. At one place I find the set-up 
of the book unsatisfactory. First the theory around relation (1) is developed. 
Next inequalities of, e.g., type (5) are considered. So far so good. But when 
the authors start with generalizations of type (4), they first develop the theory 
around inequalities connected with (4) and only after these they consider 
relation (4) itself. It would have been preferable to develop the theory around 
(4) in the same order as they theory around (1). 

The book by Bingham, Goldie and Teugels presents a broad and variegated 
area of knowledge in an orderly, accessible and yet impressive way. An opera 
of real analysis, so to speak. 
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As is well known, a problem is said to be well-posed in the sense of 
Hadamard when a unique solution exists and depends continuously upon the 
data. The definition is made precise by stipulating not only the function 
spaces in which the solution and data are to lie but also the measures and 
notion of continuity. A problem that is not well-posed is said to be ill-posed. 

Although nineteenth-century mathematicians contributed to the early 
study of ill-posed problems, it is generally agreed that the subject came to 
prominence only after Hadamard had formulated his well-known definition. 
Unfortunately, he developed an adverse view of the subject which, on becom­
ing widely accepted, had the effect of inhibiting further study. His objections 
were grounded in his celebrated counterexample of the Cauchy problem for 
Laplace's equation. In order for there to be global existence of the solution 
Hadamard demonstrated that the Cauchy data must satisfy a certain compat­
ibility relation but even in the unlikely event of the relation being satisfied he 
further showed that the solution in general does not depend continuously on 
the data. Such behaviour convinced Hadamard that ill-posed problems lacked 
physical relevance and hence should be ignored. This became the prevailing 
attitude, and consequently, in partial differential equations at least, activity 
became confined to the standard initial boundary value problems. It was only 
the growing insistence for a precise theoretical understanding from the applied 
sciences, principally geophysics and computing, that rekindled mathematical 
interest. 

It is worth considering briefly why ill-posed problems are of practical impor­
tance and hence merit detailed study. Take, for example, the simple Dirichlet 
problem for a linear elliptic homogeneous differential equation. Conditions 
are known guaranteeing that the solution exists, is unique and depends con­
tinuously upon the Dirichlet data, i.e., the problem is well-posed. These 
conditions include the requirement that the solution be specified in a suitable 
sense at all points of the boundary of the region of definition. Yet, rarely, 
if ever, can this specification be completely achieved in practice. Measuring 
devices record only approximate values and in any case are able to measure 


