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CONSTRAINED POISSON ALGEBRAS AND STRONG 
HOMOTOPY REPRESENTATIONS 

JIM STASHEFF 

A Poisson algebra is a commutative associative algebra A with an (anticom-
mutative) bracket { , } which is a derivation with respect to the commutative 
product: {f,gh} = {f,g}h + /{g^h}. Constraints constitute a distinguished 
set of elements (j)a of A. They are said to be first class constraints if the ideal 
ƒ they generate (under the commutative product) is closed under Poisson 
bracket; I need not be an ideal with respect to { , }. This structure arises in 
physics with A = C°°(W) for some symplectic manifold W. The constraints 
determine a subvariety V C W, the zero locus of ƒ, and a foliation SF of V, 
by the flows determined by the derivations { , }. One wishes to compute the 
ad /-invariant functions on V, which would give C°°(V^/^) were the foliation 
to give a submersion V —• V/^ onto a manifold. 

In a remarkable series of papers, Fradkin, Batalin and Vilkovisky [0-3, 6] 
and then Henneaux [10] developed a method for calculating the ad /-invariant 
functions in C°°(V) = A/1 without passing through the quotient A/L The 
method appeared to depend on solving certain specific, complicated equations 
and initially was applicable only locally and when / was a regular ideal. 

Using the techniques of 'homological perturbation theory' [7, 8, 9], I am 
able to justify their machinery in terms of the algebra alone, including, with 
Henneaux [11], the case of nonregular ideals [0]. The idea for this approach 
owes a great deal to the paper of Browning and McMullan [4], which revealed 
the structure of a multicomplex implicit in Fradkin et al and Henneaux. 

The Lie algebra cohomology H°{I,A/I) computes the ad/-invariant func­
tions on V, but physics requires a description in terms of A and prefers to 
use $, the linear span of the constraints (j)a, rather than the full ideal / . An 
obvious step algebraically is to replace A/1 by a free resolution over A. To 
combine this with the restriction to $ C / is more subtle. 

The Lie algebra cohomology of Cartan, Chevalley and Eilenberg [5] be­
gins with the algebra Alt( / ,A//) of alternating multilinear functions on / 
with values in A/I and a differential Alt —* Alt (which increases the num­
ber of variables by one) given in terms of the bracket on / and the adjoint 
representation of / on A/1: For example, for h : I —• A, we have 

(6h)(f, g) = h({f, g}) - {ƒ, h(g)} + {g, h(f)}. 

The subalgebra Alt ,4 (/, A/1) of ^-multilinear functions is in fact a sub-
complex with the same H°. (This is isomorphic to the complex which defines 
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the Rinehart cohomology of the (A/1, jR)-Lie algebra I /I2 with coefficients in 
A/I [12].) The inclusion $ C J induces A\tA(I,A/I) - • Alt($, A/1) and a 
differential also denoted 6. (This map is an isomorphism if I is regular.) 

Now introduce a multiplicative resolution 7r: KI —> AjI, that is, Kj is a 
graded commutative differential algebra (with differential d) and 7r induces an 
isomorphism 7r* : HQ(KI) —• A / / with Hi(Ki) = 0 otherwise. For example, if 
ƒ is a regular ideal, take Kj to be the Koszul complex; more generally, the Tate 
resolution will do [14]. If we replace AjI by Ki and consider Alt($, if/), the 
problem is to extend d to a differential D so as to realize the same homology 
as that of Alt($, A/1) with respect to 6. The major source of difficulty is that 
the adjoint representation of I on AjI does not lift to Kj ; in spite of this, we 
have: 

THEOREM 1. There are differentials 6i on Alt($,if/) which increase the 
form degree by i and the resolution degree by i — 1 such that 6o = d and 
D = 2 <$i has D2 = 0 with TT: KI —• .A/ ƒ inducing 

#°(Alt($, #/),£>) « jff°(Alt(7, A/J),«). 

Our proof of the theorem uses the methods of homological perturbation 
theory [7, 8, 9]. Let Derq K denote the derivations of Ki which increase 
resolution degree by q. The collection DerX/ = {Der9 Ki} is made into a 
differential graded Lie algebra by using the graded commutator of deriva­
tions and the induced differential: dO = [d,0]. We cannot, in general, find a 
representation of I in Der K\, but we can find a "strong homotopy representa­
tion", meaning a family 6« € Alt*(/,DerüC/) for i > 1 satisfying the following 
relations: For i = 1, Q1{f) = {ƒ, }. For i > 1, and fo = ( / 0 , . . . , ƒ;), 

(*) [d,eu = £ [ e ' , e * ] ^ 
For t = 1, this is to be interpreted as [d, 01} = 0. Here [ , ] is the usual 

induced bracket on Alt(V, L) for a vector space V and Lie algebra L. The 
maps 0* are constructed inductively, using a contracting homotopy s for Ki, 
that is: sd + ds = 1 — 7r where f: if/ -* A / / —* A *—• if/ and the map 1 - # is 
the identity on / . We begin by defining 6 1 : ƒ —* Der° Kj as an extension of 
the adjoint action of J on A as follows: By induction on the resolution degree 
of a generator x of Kj over A, define O1 (ƒ)(#) = sQx(f){dx). Verify directly 
that (*) is valid in the form [d, 61] = 0. Now assume we have constructed Oz 

for i < n to satisfy (*). Let RHS denote the right-hand side of the equation 
(*) for i = n. Verify that [d, RHS] = 0 using (*) and the Jacobi identity. Now 
define the derivation 6 n ( / n ) as sRHS. We verify that 

[d, sRHS] = cteRHS + sRESd = {ds + sd)RES by induction 

= (1 - 7f)RHS = RHS, 

since RHS raises resolution degree by at least j - 1 + k — 1, which is into the 
kernel of IT unless j = k = 1. For n = 2, we also use the fact that 0 1 is 
an extension of the adjoint action of / on A in terms of the original Poisson 
bracket. 



CONSTRAINED POISSON ALGEBRAS 289 

Since $ C / need not be closed under the bracket, we cannot just restrict 
D to Alt($, Ki). Instead, the FBV construction in the regular case makes 
further use of the Poisson algebra. Notice that the Koszul resolution can be 
written as A <g> f\ s$ where s$ is isomorphic to $ as a vector space, while 
Al t ($ ,# / ) contains the vector space dual $* = Hom($,i2). Extend the 
Poisson bracket of A to all of Alt($,jK/) by first defining {$*,$$} to be 
isomorphic to the usual dual pairing and then extending to a graded Poisson 
bracket by using the derivation property: {v,rjA<;} = {u^r/JAc-K-l^ '^ ' r /A 

THEOREM 2. There is an element Q € n A l t P ( $ > # / ) such that D in 

Theorem 1 is given by D = {Q, }. 

We write Q = ^QP where Qp € Altp + 1 (*,/£/) takes values in A<g>/\p s$. 
Although D = {<2, }, we do not have 6i = {Q;, } but rather 6i is of bidegree 
(i,i - 1), while {Q, } has components of bidegree (i,i - 1) and (i + 1,2). To 
start, let <2o be the inclusion i\ $ *^ A <-̂  ÜT/ so that {Qo? }\Ki is the Koszul 
differential. (This is easier to see in terms of a basis {</>a} for $, dual basis 
{r)a} for $*, and basis {^a} for 5$ so that Q0 = (j)^01.) Filter Alt(*,ifj) 
by Fp = 5Z i<p Alt1, and for any element /£ of the complex, let R2 denote 
7i{R, R}. Now construct Qi by induction so that the partial sums Ri = J2Qj 
have the following properties: 

B*eF*+2 and dR2
v G F p + 3 . 

Define Qn+i = — sR^. A slightly complicated computation then shows that 
Rn+\ satisfies the inductive hypothesis. 

We have left to show that D gives the desired homology. The resolution 
7r: KI —• A/1 induces a map of complexes. If we filter Alt(^,i5C/) as above, 
the associated graded has differential just d with homology Alt($, A/1). A 
standard spectral sequence argument then gives the desired result. 

Because of the motivating physics, Fradkin et al consider also the situation 
in which A is a super-Poisson algebra, i.e. Z/2-graded with appropriate signs 
throughout. Now we need to use a super-resolution, for example, Jozefiak's 
[13]. The formalism we have used need only be made super (i.e. attend 
carefully to signs) with some extra care interpreting formal power series. 

As a guide to the physics literature, in the regular case, Qi corresponds 
to an expression U^rj^^â where â = ai • • • c^_i, /? = /3\ • • • /?»+i and r/£ = 
rjPi / \ . . . Ar/^^1, etc. Finally, the rjP are called ghosts, the ^a anti-ghosts and, 
in the nonregular case, syzygies are called extraghosts or ghosts-of-ghosts-of-
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