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We work over a fixed field k, either the real or complex numbers. A 
quadratic cone in a k-vector space E is an affine variety Q C E defined 
by equations 

B(u,u) = 0 

where B : E x E —• E' is a bilinear map and E' is a vector space. (E may be 
identified with the Zariski tangent space to Q at 0.) Let V be an algebraic 
variety and x € V be a point. We say that V is quadratic at x if the analytic 
germ of V at x is equivalent to the germ of a quadratic cone at 0. 

Let T be a finitely generated group and G a k-algebraic group. We identify 
G with its set of k-points, which has the natural structure of a Lie group over 
k. Then the set Hom(r, G) of all homomorphisms r —• G equals the set of 
k-points of a k-algebraic variety 9t(r,G) (compare [9, 10]). 

THEOREM 1. Let Y be the fundamental group of a compact Kàhler man­
ifold. Let p € Hom(r, G) be a representation such that its image p(T) lies in 
a compact subgroup of G. Then £K(r, G) is quadratic at p. 

Suppose that {Hp>q, Q} is a polarized Hodge structure of weight n, that G 
is the group of real points of the isometry group of Q and X = G/V is the 
classifying space for polarized Hodge structures of the above type (see Griffiths 
[8, p. 15]). Suppose further M is a complex manifold with fundamental group 
T. A representation p: T —• G determines a flat principal G-bundle Pp over 
M and an associated X-bundle Pp XQ X. A horizontal holomorphic V-
reduction of Pp is a holomorphic section of Pp XQ X whose differential carries 
the holomorphic tangent bundle of M into the horizontal subbundle Th(X) 
defined in [8, p. 20]. 

THEOREM 2. Let M be a compact Kàhler manifold with fundamental group 
T and X = G/V a classifying space for polarized Hodge structures. Suppose 
that p: T —• G is a representation such that the associated principal bun­
dle over M admits a horizontal holomorphic V-reduction. Then 9l(r, G) 'is 
quadratic at p. 
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If 7r: E —• M is a holomorphic family of smooth polarized projective vari­
eties parametrized by M, then the period mapping which attaches to a: G M 
the polarized Hodge structure on Hn('ir~1(x)) is a horizontal holomorphic 
V-reduction of the principal bundle associated to the monodromy representa­
tion. 

COROLLARY. Suppose p: T —> G is the monodromy of a variation of Hodge 
structure over M. Then 9t(r, G) is quadratic at p. 

The idea behind the proof of Theorem 2 can be applied to a number of 
other closely related situations. The following result can be used to construct 
deformations of discrete groups of automorphisms of complex hyperbolic space 
(compare [2] and [6]). 

THEOREM 3. Let M be a compact Kàhler manifold tuith fundamental group 
T and X = G/K a Hermitian symmetric space with automorphism group G. 
Suppose p:Y—>Gisa representation such that the associated principal G-
bundle over M admits a holomorphic K-reduction. Then ÜH(I\ G) is quadratic 
at p. 

Perhaps the most important feature of such "quadratic singularity" the­
orems is that the quadratic functions are computable algebraic topological 
invariants. Thus we obtain a criterion for nonsingularity of £K(r, G) near a 
representation p. The Zariski tangent space to 9t(r, G) near p equals the space 
Z1(r;0Ad p) of Eilenberg-Mac Lane l-cocycles of T with coefficients in the T-
module 0Ad p (given the action defined by the composition r —• G —• Aut(jj)). 
The quadratic cone is defined by the cup-product where the Lie bracket 
[ , ] : 0 x g —• g is used as a coefficient pairing. 

COROLLARY. Suppose that M is a compact Kàhler manifold with funda­
mental group T and that p: T —• G is a representation satisfying the hypotheses 
of Theorems 1,2, or 3. Suppose that the cup-product 

^(r,0Ad „) x Jï^r.BAd P) - #2(r,0Ad P) 
is identically zero. Then <R(r, G) is nonsingular at p. 

For G compact, the quadraticity of tangent cones to ÜH(I\ G) was proved in 
Goldman-Millson [7]. When p is a reductive representation of the fundamental 
group of a closed surface, it was shown in Goldman [5] that the tangent cone 
to 9t(r, G) is quadratic. Recent work of Carlos Simpson (Higgs bundles and 
local systems. II, Princeton Univ. preprint) implies quadratic singularities for 
a large class of representations, including reductive representations of surface 
groups. 

The proofs of Theorems 1, 2, and 3 involve showing that two analytic germs 
are equivalent. We replace an analytic germ (V, x) first by the complete local 
k-algebra 0{y,x) °f V at x; it follows from Artin [1] that the isomorphism 
class of 0(v,x) determines the equivalence class of the analytic germ of V at 
x. Furthermore this isomorphism class is determined by the functor which 
associates to an Artin local k-algebra A the set Hom(0(y)X), A) of k-algebra 
homomorphisms Hom(0(v»> A), or equivalently the set of A-points of V over 
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x € V. Thus we prove two analytic germs are equivalent by showing their 
corresponding functors Ajfcal —• Sets are naturally isomorphic where Aj^cal 

denotes the category of Artin local k-algebras. 
This will be accomplished by introducing several auxiliary "deformation 

theories." A transformation groupoid is a category C arising from the action of 
a group on the set Obj C of objects of C. If C arises from an action of a group H 
and Y is another if-set then we denote by C M Y the transformation groupoid 
arising from the diagonal action of H on Obj CxY. If F: C —• C' is a functor 
of transformation groupoids preserving actions of the corresponding groups 
on a set Y, then there is a corresponding functor F tx\Y: C M F —• C' ixi y ; 
then F M y is an equivalence of categories if F is. If C is a category we denote 
by Iso C the collection of isomorphism classes of objects; an equivalence of 
groupoids C —• C' induces an isomorphism of sets Iso C —• Iso C'. 

Fix an Artin local k-algebra A with maximal ideal m; let G A denote the 
group of A-points of G with its natural structure as a Lie group over k—indeed 
G A equals the semidirect product of G with the nilpotent normal subgroup 
exp(g ® m). If po € Hom(r,G) then the set of A-points of 9t(r,G) over p0 

equals the fiber q+l{po) of the map 

g*: Hom(r,GA)—Hom(I\G) 

induced by projection q: G A —*• G. Let ZA(PO) (resp. Z'A(Po)) denote the 
transformation groupoid with set of objects q^ipo), and with morphisms 
conjugation by elements of exp(g<g>m) (resp. only the identity morphisms). 

Let M be a manifold, x G M and let T = 7Ti (M, X). Let (P, uo) be the flat 
principal G-bundle over M with holonomy representation po- Let PA = P*G 
G A be the principal G^-bundle obtained by enlarging the structure group of 
P by G —• GA and let i: P —• PA be the corresponding inclusion; then the 
flat connection u>o on P induces a flat connection üo on PA- Let 7A(WO) (resp. 
?A(UO)) denote the transformation groupoid with objects the flat connections 
S) on PA such that i*u> = uo and morphisms the gauge transformations PA —• 
PA which act trivially on P C PA (resp. and fix the fiber over x). Choose a 
basepoint p in the fiber of PA over x. If F is a gauge transformation (resp. 
infinitesimal gauge transformation) of PA, let ev(F) denote the element of G 
(resp. g) corresponding to the action of F at p. If a; is a flat connection on 
PA, let holp(u;) € Hom(r,G>i) denote the holonomy homomorphism of u at 
P-

LEMMA. The correspondence (holp,£p) defines equivalences of categories 

£*(wo) - • £A(PO) 

and 

KM - *ît(A>) 
which depend naturally on A. 

Thus we replace the functor A i-> Iso £^(po) corresponding to the germ 
of 9l(r, G) at po by the naturally isomorphic functor A »-• Iso 7A(UO)- We 
next reinterpret the functor A i-+ ?A(C*;O) in the general context of differential 
graded Lie algebras. 
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Let L denote a differential graded Lie algebra; following Deligne [3] we 
define a functor A »-• C(L;A) from A£ c a l to the category of transformation 
groupoids as follows. The objects of C(L; A) are the elements 77 6 L1 0 m 
satisfying the deformation equation 

(1) dry + £[77,77] = 0 

and the morphisms are elements of the nilpotent group exp(L° ® m) acting 
affinely on L1 <8> m by 

(2) exp(tA) : 77 ~ exp(* ad A)(iy) + 7 ~ e x P ( * a d X\d\). 
ao. A 

If 0 is a Lie algebra and L is a differential graded Lie algebra, then a g-
augmentation of L is a Lie algebra homomorphism e: L —» g, where 9 is 
regarded as a differential graded Lie algebra with no nonzero elements of pos­
itive degree. The augmentation ideal is L' = Ker e. We obtain an equivalence 
of categories 

C(L'; A) - • C(L; A) 1x3 exp(g <g> m) 
depending naturally on A. 

Two g-augmented differential graded Lie algebras are quasi-isomorphic if 
they can be connected by a sequence of homomorphisms of g-augmented dif­
ferential graded Lie algebras each inducing an isomorphism on cohomology; a 
g-augmented differential graded Lie algebra is formal if it is quasi-isomorphic 
to one with zero differential. The following basic result states that quasi-
isomorphic differential graded Lie algebras give rise to equivalent deformation 
theories: 

THEOREM (SCHLESSINGER-STASHEFF [12], DELIGNE [3]). Let k be a 

field of characteristic zero and <p: L —• L be a homomorphism of differential 
graded Lie algebras such that the induced maps H%{<p): HX(L) —* Hl(L) are 
isomorphisms for i = 0,1 and infective for i = 2. Let A be an Artin local 
k-algebra. Then the induced functor <p+ : C(L]A) —• C{L;A) is an equivalence 
of groupoids depending naturally on A. 

If (L,e) is a g-augmented differential graded Lie algebra with zero dif­
ferential, then Obj C(L';A) equals the set of A-points over the origin of the 
quadratic cone QL C L1 defined by [w, u] = 0. By applying the above theorem 
with the operation 

C »-+ C M exp(g ® m) 

repeatedly we obtain the following general result, relating quadratic singular­
ities to augmented differential graded Lie algebras: 

PROPOSITION. Suppose (L,d,e) is a formal ^-augmented differential 
graded Lie algebra. Suppose that e: L° —• g is surjective and its restriction to 
H°(L) C L° is injective. Let Q denote the quadratic cone 

QH(L)X9MH°(L)). 

Then the functors A}fcal —• Sets defined by 
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and 
A*->IaoC{Lf',A) 

are naturally isomorphic. 

These general results on differential graded Lie algebras are applied as 
follows. Let ad P = P x<j g be the Lie algebra bundle associated to P by the 
adjoint representation and f2* (M; ad P) the differential graded Lie algebra of 
ad P-valued exterior differential forms on M with the covariant differential D 
associated to u;o- If w € Obj 7A(^O)> then 

r\ = (JJ - (Do € nl(M;zÂ PA) = ^{M-^d P)®A 

satisfies (1) and the action of morphisms in 7A{^O) is given by (2)* Thus we 
obtain: 

LEMMA. Let L denote the ^-augmented differential graded Lie algebra 
(n*(M; ad P),ep). The functor 

defined by w *-> UJ — û)0 is an isomorphism of groupoids depending naturally 
on A. 

The proofs of Theorems 1, 2 and 3 are completed by applying the above 
propositions to the following. 

PROPOSITION. Let M be a compact Kàhler manifold and p € Hom(I\G) 
be a representation satisfying the hypotheses of Theorems 1,2, or 3. Let ad Pc 
denote the corresponding flat g®C-bundle over M and letL = f2*(M;ad Pc)-
Then the gc-augmented differential graded Lie algebra (L,D,ep) is formal 

The proof follows the ideas indicated in [4] proving that the de Rham 
algebra of a compact Kàhler manifold is formal. In each case the covariant 
differential on Q*(M; ad Pc) decomposes as D = D'+D", where the standard 
Kàhler identities 

AD = 2 AD/ = 2 AD» , [A, D') = iD"*, [A, D") = -iD'* 

hold. (For Theorems 2 and 3, one uses Deligne's decomposition of D by 
total bidegree—see Zucker [14], also Corlette [2], Simpson [IS].) Since the 
spaces of Z?-harmonic, .D'-harmonic, and /^''-harmonic forms coincide and the 
'̂ principle of two types" is satisfied, it follows that 

(n*(M;ad Pc),D,ep) «- (Ker D',D",ep) -> (^*(M;ad P c) ,0,ep) 

are homomorphisms of g-augmented differential graded Lie algebras which 
induce isomorphisms on cohomology. 

REMARK. In their paper Symmetry and bifurcation of momentum map­
pings (Comm. Math. Phys. 78 (1981), 455-478), Arms, Marsden and Mon-
crief prove quadratic singularities for level sets of momentum mappings for 
certain Poisson actions on symplectic manifolds. Their results may be under­
stood from the above point of view as follows. To an affine Poisson action 
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there is associated an augmented differential graded Lie algebra; their hypoth­
esis (the existence of an invariant positive almost complex structure) implies 
this differential graded Lie algebra is formal. Details will appear elsewhere. 
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