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Other representations of solutions are mentioned, for instance those in terms 
of generalized hypergeometric functions. The G-functions have one decisive 
advantage over these alternatives: The differential equations have irregular 
singularities at infinity. There, different solutions may have different orders of 
magnitude. In linear combinations of these solutions the fastest-growing com­
ponent present in them determines their order of magnitude. In the solutions 
by G-functions the several orders of magnitude appear separately, while in the 
solutions by generalized hypergeometric functions these distinctions are ob­
literated by the presence of a contribution from the most dominant solution. 

The last third of the book deals with applications. Some of them originate in 
physics, such as boundary layers in magnetohydrodynamics, plasmas, stellar 
winds and viscous flows. Other appHcations are purely mathematical. They 
concern the spectral theory of differential operators in Hubert space, in 
particular the extension to higher order of differentiation of the Titchmarsh-
Weyl theories on the existence and number of L2-eigenfunctions. 

I believe that this book will be often useful to readers who are looking for 
ways to deal with some particular differential equation of order higher than 
two. Rarely will it be studied from beginning to end. The task of following a 
thread through the book to the formulas and techniques needed in the study of 
some specific equation would have been made easier if the displayed formulas 
had been printed in a more easily readable type. 

It is often possible to construct transformations that reduce differential 
equations of a general class into equations of the special forms analyzed in this 
book. This "comparison" technique is well developed for second-order equa­
tions. I would be pleased if this book stimulated the search for more general 
transformations of this kind. 

WOLFGANG WASOW 
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This book grew out of four lectures delivered by Mikhael Gromov in 1981 at 
the College de France in Paris. Its purpose is twofold, namely to give an 
introduction to manifolds of nonpositive curvature and to give the proof of 
two outstanding results: the rigidity of locally symmetric spaces in the class of 
all manifolds of nonpositive curvature (in generalization of Mostow's rigidity 
theorem), as well as an estimate for the topology of nonpositively curved 
analytic manifolds of finite volume (for more precise statements see below). 
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Viktor Schroeder has worked out and written up these lectures and enriched 
them by several appendices which contain complementary material as well as 
his own contributions. Finally there is an appendix by Werner Ballmann on 
recent developments in the theory by which in particular Gromov's rigidity 
theorem can be deduced from that of Mostow. 

The most important invariant of a Riemannian manifold is its curvature, 
more precisely its sectional curvature, which is measured at each point for each 
two-dimensional subspace of the tangent space at that point. As usual this will 
be denoted by K. The sign of the curvature has a strong influence on the 
topology and geometry of the manifold. For a surface in space, K coincides 
with the Gaussian curvature, i.e., with the product of the two principal 
curvatures, and is positive at points where the surface is convex and negative 
where it looks like a saddle. This implies in particular that there are no 
compact surfaces with K < 0 in R3. In fact, at a point which is farthest away 
from the origin the surface looks necessarily convex and thus has strictly 
positive curvature there. 

Nevertheless there are plenty of examples of manifolds with strictly negative 
curvature (K < 0) and even more with nonpositive curvature (K < 0). The 
uniformization theorem shows for instance that any compact orientable surface 
of genus g > 2 admits a metric of constant curvature -1 and in fact a whole 
variety: the isometry classes of such metrics are in 1-1 correspondence to the 
conformai structures on that surface and thus form the Teichmuller space Tg 

which has dimension 6g - 6. As another example, the complement of most 
knots in R3 U {oo} = S3, e.g., the figure-eight knot admits a hyperbolic 
structure, i.e., a complete metric of finite volume and constant curvature - 1 , as 
has been shown recently by W. Thurston. 

Manifolds of constant negative curvature belong to the broad class of locally 
symmetric spaces (of noncompact type) whose universal coverings are the 
symmetric spaces. These are among the most beautiful examples of Rieman­
nian manifolds because they possess a lot of symmetries. For each point the 
reflection at the point along the geodesies is a globally defined isometry. One 
of their advantages is that they can be described algebraically as a homoge­
neous space G/K. In the noncompact case G is a semisimple Lie group 
without compact factor and center and K a maximal compact subgroup. The 
hyperbolic spaces over the reals, the complex numbers, the quaternions, and 
the Cayley hyperbolic plane are precisely those of strictly negative curvature. 
These form only the tip of an iceberg, all others (of noncompact type) have 
curvature K < 0 but possess also zero curvatures. In fact, they are of rank > 2 
which means that each geodesic is contained in a flat totally geodesic subspace 
of dimension at least two. It is this huge number of flat subspaces which makes 
a (locally) symmetric space of rank > 2 so rigid.1 

As has been shown by Borel, using methods from number theory, every 
symmetric space of noncompact type admits infinitely many compact quo­
tients as well as noncompact ones of finite volume. Thus there are plenty of 

1This is not quite correct since in the dual case of nonnegative curvature there are plenty of 
examples of nonrigid higher rank manifolds. These can be constructed by taking a normal 
homogeneous space G/H with dim H < rank G - 2. 
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examples of manifolds of nonpositive curvature and one gets even more by 
applying certain constructions to them like gluing them together along ap­
propriate ends or taking ramified coverings. For the latter construction see the 
recent paper of Gromov and Thurston [Gr-Th]. 

Intrinsically, the sign of the curvature may be expressed by the velocity by 
which two geodesies move apart. Roughly speaking, the more negative the 
curvature becomes the faster they diverge. By comparison with Rn it follows 
that geodesies emanating from a point in a simply connected manifold of 
nonpositive curvature never come together again. This is the essential reason 
for the classical theorem of Hadamard and Cartan: 

THEOREM. Let M be a complete manifold of nonpositive curvature andp e M. 
Then the exponential map exp^: TpM -> M {which maps the rays through 0 onto 
geodesies through p with the same initial direction) is a covering map. 

Thus, the universal covering of M may be identified with Tp M and is in 
particular contractible. Therefore the higher homotopy groups of M vanish: 
irk(M) = 0 for k ^ 2 and the fundamental group ^ ( M ) is the most important 
topological invariant and plays a decisive role. It probably determines the 
topology and geometry of M to a great extent, although it is not quite clear up 
to now how much this is the case. However, there are many positive results in 
this direction and the most famous one is the rigidity theorem of Mostow 
which, in a slightly simplified form, can be stated as follows. 

THEOREM (MOSTOW). Let Mx and M2 be two compact locally symmetric 
spaces of equal volume with irreducible universal coverings and of dimension 
bigger than two. Then Mx and M2 are isometric if and only if they have 
isomorphic fundamental groups. 

The two-dimensional case has to be excluded since there is the Teichmüller 
space of different metrics of constant curvature - 1 . One of the main goals of 
the book is to prove the following generalization. 

THEOREM. Let Mx and M2 be two compact manifolds of nonpositive curvature 
of equal volume and with irreducible universal coverings. Assume that Mx is 
locally symmetric of rank > 2. Then M1 and M2 are isometric if and only if they 
have isomorphic fundamental groups. 

A crucial role in the proof of both theorems is played by the Tits building of 
a symmetric space. Geometrically speaking it describes the intersection pattern 
of the flats, i.e., of the flat totally geodesic subspaces of maximal dimension. 
Since this is rather complicated in the manifold itself, one considers it at 
infinity, i.e., in the boundary, which can be attached to any complete simply 
connected manifold of nonpositive curvature in a natural way. By a fundamen­
tal result of Tits, the building determines a symmetric space of rank > 2 
essentially up to isometry. Therefore, the main idea in Mostow's proof is to 
construct from an isomorphism between the fundamental groups an isomor­
phism between the Tits buildings, via a Hft of a homotopy equivalence to the 
universal coverings Mt. Now, in Gromov's situation only Mx is a priori 
symmetric and has a nice Tits building. Gromov overcomes this difficulty by 
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attaching to each point of M2
 a n involution of the Tits building of the 

symmetric space Mv The associated isometry has a unique fixed point and 
thus gives a map between M2 and Mv This turns out to be an isometry which 
finally can be pushed down to the quotients. Shortly after Gromov's lectures at 
Paris, W. Ballmann, M. Brin, K. Burns, P. Eberlein, and R. Spatzier obtained 
other deep results about manifolds of nonpositive curvature in a series of 
papers. Finally, Ballmann proved [B]: 

THEOREM. Let M be a complete manifold of nonpositive curvature of finite 
volume and rank > 2 and with irreducible universal covering. Then M is locally 
symmetric. 

It follows easily from this theorem that in Gromov's situation both mani­
folds are locally symmetric, so that Mostow's rigidity theorem can be applied. 

The second main result of the book concerns the topology of analytic 
manifolds of nonpositive curvature. It extends known results for locally 
symmetric spaces as well as earlier results of Gromov himself about manifolds 
of strictly negative curvature. 

THEOREM. Let M be a real analytic complete manifold of finite volume and of 
bounded nonpositive curvature, -k < K < 0. 

(i) M is of finite topological type, i.e., diffeomorphic to the interior of a 
compact manifold with boundary. In particular it has only finitely many ends. 

(ii) If the universal covering of M does not have a euclidean factor then 

L^<c w Â: w / 2 vol (M) , 
i 

where the bt are the Betti numbers of M with respect to any coefficient field and cn 

depends only on n = dim M. In particular, the volume of M is bounded from 
below. 

Examples show that the assumption on the analyticity is really necessary. 
An essential ingredient for the complicated typical Gromov-style proof is the 

so-called MarguHs lemma, which had been used by Gromov already several 
times very successfully. 

THEOREM (MARGULIS). For every n there exists an en> 0 such that for any 
complete, simply connected n-dimensional manifold with curvature K, -1 < K < 
0, and any discrete group T of isometries the subgroup Te(x) generated by 
{y G T\d(yx, x) < £„} is almost nilpotent, i.e., has a nilpotent subgroup of 
finite index. 

A version of this lemma for manifolds of strictly negative curvature together 
with finiteness results for the topology and an upper bound for the volume is 
also contained in [H], 

Roughly speaking, the MarguHs lemma enables one to get information about 
the topology of a metric baU if the injectivity radius becomes very small. In the 
case of strictly negative curvature, for example, it shows that the manifold can 
be covered by a certain number of convex baUs or sets homeomorphic to 
vector bundles over S1, which then yields by a refined Mayer-Vietoris argu­
ment the estimate for the Betti numbers. 
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The book contains much more than the mere proof of the two principal 
results. In the first two chapters Gromov explains basic facts about manifolds 
of nonpositive curvature and of course does this in his very own original style. 
Therefore this introduction contains exciting new ideas even for experts. 
Certainly the most important one is the definition of the Tits metric for points 
at infinity of a complete simply connected manifold of nonpositive curvature. 
If x and y are such points then <(x, y) is defined as the supremum of all 
angles under which x and y can be seen from a finite point. The Tits distance 
Td is then defined as the corresponding inner metric, i.e. as the infimum of the 
length (w.r.t. <) of all curves in the boundary connecting the points. One of its 
main features is that flat totally geodesic subspaces are reflected by this metric. 
They give rise to isometrically embedded round spheres in the boundary. In 
particular, the boundary of Rn with the Tits metric is the standard sphere 
Sn~1. For a symmetric space, Tits metric and Tits building contain the same 
information and determine each other. This explains the name. There is no 
doubt that the Tits metric will be an important tool for further investigations. 

The book by M. Gromov, V. Schroeder, and W. Ballmann is an extraor­
dinary one which contains a wealth of new ideas as well as plenty of 
inspiration for further work. (For example the study of the relation between 
Tits metric and fundamental groups of compact quotients seems to be very 
promising.) It is of course not a textbook in the usual sense. Although it starts 
quite easy it ends more or less like a research paper. But due to the excellent 
work of V. Schroeder the presentation is always clear. I think the book will 
have a strong influence on the further development of the theory of manifolds 
of nonpositive curvature. 
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The volume under review deals with analytic methods for diophantine 
inequalities. For diophantine inequalities, and in fact for many diophantine 
problems in general, the appropriate tool is Fourier analysis. Among the most 


