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This book develops and explores certain classes of problems in partial 
differential equations by means of some fundamental connections with the 
theory of diffusion processes and stochastic differential equations. The typical 
PDE here is an elliptic or parabolic problem based on a second-order operator 
of the form 

i,j=i l J i=i l 

with a = [atJ] symmetric, nonnegative definite. 
The connection between linear PDEs and stochastic processes goes back 

many years, at least to the work of A. N. Kolmogorov in the 1930s. Both 
subjects have benefited from the interaction. Many people who deal with PDEs 
are aware of at least some of these classical connections. It is perhaps not so 
widely known however that certain asymptotic and singular perturbation 
questions, and even nonlinear problems, can be studied in this way as well. 

For those not familiar with these classical connections, consider the familiar 
initial value problem for the heat equation in R :̂ find 

K(- , •) €= C([0, oo) X Rd) n C u ( ( 0 , oo) X Rd) 

which solves 

(2) ut(t, x) = jAu(t, x) for / > 0; n(0, x) = <p(x). 

Given a bounded <p e C(Rrf), the unique solution is given by 

(3) u(t,x)= ƒ p(t,x,y)<p(y)(ty 

where p(t, x, y) is the heat kernel: 

p(t,x,y) = (2irt)-d/2e-\y-x?/2'. 

The probabilist, on the other hand, knows the heat kernel as the "transition 
density for Brownian motion" in R .̂ A Brownian motion is a mapping 
co -> /Jw(-) taking the elements <o of a probability space (Q, J*", p ) to continu­
ous functions /}(•) e C([0, oo), R^). It qualifies to be called a Brownian motion 
(starting at a given x0 G R^) when the measure induced on # = C([0, oo), Rd), 

Wx (G) = P[{o) : j8tt( ) e G}] for measurable G ç ? , 
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is the particular measure called Wiener measure. It would be difficult to give a 
thorough description here; see [3]. However the connection with the heat 
kernel is exhibited in the special case G = {ft('): j6(0 e T}, T ç R :̂ 

P[{o>:/i„(t)eT}]=«PXo[li(t)eT]" 

ƒ p(t,x0,y)dy. 

(I am using quotation marks to indicate the standard notation.) In particular 

'E 
x0 

[<p(m)]n-f<p(Mt))p(dw) 

-L , P(t,x0,y)q>(y)dy 

= u(t9x0). 

Thus we have expressed the solution u of the PDE (2) as the "expected value" 
or integral of a functional of Brownian motion: 

(4) «(*,*„) = -*U*08(-) ) l where * (ƒ ( • ) ) = <p( ƒ( / ) ) , / e <f. 

Similar representations are possible in much wider generality. To replace the 
\L in (2) by the more general L of (1), one replaces the Brownian motion /3(t) 
by the solution x(t) of the stochastic integral equation 

(5) x ( 0 = *o+ (tb(x(s))ds+ f a(x(s))dp(s). 

The relation between the matrices a( • ) here and a( • ) in (1) is a( • ) = a( • )a( • )T. 
With appropriate Lipschitz continuity and growth conditions on b and a, (5) 
has a unique solution. (This is the subject of stochastic differential equations.) 
The solution x(t) is another random continuous function, <o -» xw(-). Using 
the same functional $ as in (4), 

(6) «(*,*„)-£„[*(*(•))] 

= ƒ v(Xt,(t))P(d") 

gives the functional integral representation of the solution to 

ut = Lu for t > 0; w(0, x) = <p(x), 

provided the solution exists. 
More general PDEs based on the same operator L have similar functional 

integral representations using the same process x(t) but different functional 
O. Another example, with the associated PDE for u = 2s[0(x(-))], is 

( ? ) 9(x(-)) = <p(x(t))eM«ay>d', 
ut = Lu + c • u\ w(0, x) = <p(x). 

For elliptic problems in a domain D ç Rd, use the first exit time T = inf {* > 0: 
x(t) & D] to define the functional 

* ( * ( • ) ) - 9 ( * ( T ) ) . 
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Then u(x0) = 2S[<I>(JC(-))] will agree with the solution of the Dirichlet problem 

(8) Lu = 0 in D; u(x) = <p(x), x e 3D, 

provided this is well posed in a classical sense. Several other linear problems 
also admit such representation of their solutions. Of course for these PDE 
problems to be well posed in a classical sense some other hypotheses are 
required, things like smoothness of the coefficients of L and of 3D, and 
boundedness of D. An important observation is that the functional integral 
u — E[<S>(x(-))] is well defined under only the weaker hypotheses needed for 
(5). For instance a(-) in (1) may be only nonnegative definite. Thus the 
functional integral representation provides a natural notion of "weak" solution 
and the theory of stochastic differential equations is a powerful set of tools for 
its study. 

Freidlin's book explores the application of these ideas to numerous classical 
linear problems as well as nonlinear and asymptotic questions. In addition to 
formulation and proof of theoretical results, numerous examples are consid­
ered which illustrate the pathologies possible in nonclassical situations. The 
book as a whole provides a masterful and extensive demonstration of the 
techniques and ideas used in this approach to PDE problems. To be sure, a lot 
of what these methods yield about the PDE problems can be done just as well 
with more traditional PDE methods. On the other hand, the functional integral 
approach has a compelling intuitive appeal. Moreover in some problems, 
especially asymptotic ones, the functional integral approach seems to come 
closer to the heart of the problem and provide rigor beyond its analytical 
counterpart. 

Chapter 1 is a nice survey of stochastic differential equations and related 
matters, including basic Wentzell-Freidlin large deviation theory. Though 
fairly extensive in its coverage, I doubt that the reader with no previous 
background will be able to appreciate the rest of the book based on the 
exposition in this chapter alone. Rather he will need first to study an entry 
level text on SDEs, such as Friedman [3]. For the reader who does have some 
background in SDEs, Chapter 1 may well be helpful by way of review, as well 
as alerting him to important aspects of the theory which may be missing in his 
background. He can then fill himself in from the other references, such as [6]. 

Chapter 2 covers linear problems for nondegenerate L, i.e. positive definite 
a(-). Much of this is either contained in or a natural extension of the 
treatments in other texts. For instance the exterior cone sufficient condition for 
regularity of points in 3D (for the Dirichlet problem (8)) is discussed. The 
connection between uniqueness for the exterior Dirichlet problem and recur­
rence of x(t) is developed, with stochastic Lyapunov function sufficient 
conditions, such as formulated by R. Z. Hasminskii [4]. Also discussed are 
problems with Neumann-type boundary conditions and their representation in 
terms of reflected diffusions and the local time process on 3D. I am not aware 
of any other treatment of this topic in book form. Freidlin's exposition is 
fascinating in particular as he explains the probabilistic interpretation of 
classical solvability conditions on the Neumann boundary data. The inclusion 
of this is timely since there has been increased interest in these issues recently; 
see [5] and [7] for instance. 
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Chapter 3 discusses degenerate problems, and does so in more depth than I 
have seen in other texts. The decomposition of 3D into the different compo­
nents necessary for an accurate statement of boundary value problems is 
described rather carefully. General results on regularity of the functional 
integral solutions are developed. Several examples are presented which il­
lustrate such phenomena as discontinuous solutions even for problems with 
C00 coefficients and boundary conditions. 

Functional integral representations have proven quite fruitful in the study of 
various asymptotic questions. There has been a lot of recent work on problems 
in which L involves a small parameter, e J,0, 

U = ELX + L0, 

and one is interested in the e-asymptotics of the solutions of various PDE 
problems associated with Le. Many such problems have been proposed as 
models in applied contexts. The functional integral representations allow these 
problems to be studied in terms of the e-asymptotics of the diffusion process 
xe(t) associated with U. Exactly what asymptotic phenomena are involved 
depends on the particular problem. Sometimes convergence of xe(t) -> x°(t) 
(where x°(t) is the process associated with L0) on compact time intervals is all 
that is involved. Other cases involve a second "fast" time scale whose asymp­
totic effect is to produce some ergodic "averaging" so that the limit u° = 
lime i 0 u

e solves a reduced problem associated with an operator L0, which is L0 

with some spatial dependence appropriately averaged out. 
A third class of asymptotic problems consists of ones in which the effect of 

eL0 must "overcome" a contrary influence of L0. The PDE approaches to 
these problems often involve such techniques as matched asymptotic expan­
sions and WKB-style representations. On the probabilistic side the central 
ideas come from the subject of "large deviations." Freidlin, with A. D. 
Wentzell, pioneered much of this subject [2]. The probabilistic and WKB-style 
analyses frequently parallel each other and often both are illuminated as a 
result. For instance the "eiconal" equation which emerges from the WKB 
formalism typically is the Hamilton-Jacobi equation for a variational problem 
coming out of the large deviations analysis. The latter, and the role played by 
the variational problem, is valid even in those cases where singularities occur in 
the "solution" of the eiconal equation, preventing a classical solution. (The 
notion of "viscosity solution" seems to be bridging this gap from the PDE 
side; see [1].) Though this particular issue is not discussed in the book, I 
mention it to counter the misconception that functional integral techniques do 
nothing more than provide new proofs of old PDE results. 

Chapter 4 of Freidlin's book considers numerous cases of the asymptotic 
problems that I have alluded to above. In addition to discussing some of the 
important general types of problems, he also analyzes a number of particular 
examples which illustrate what can happen in other situations, such as degener­
ate perturbing noise (i.e. second-order part of Lv having less than full rank). 

The final three chapters deal with nonlinear problems. Chapter 5 is a 
discussion of how functional integral techniques can be applied to quasilinear 
problems, in which the coefficients a, b of (1) as well as c of (7) are allowed to 
depend on the solution u. In essence the idea is to think of the solution as a 



350 BOOK REVIEWS 

fixed point of the mapping which takes u to the coefficients of L, thence to the 
functional integral representation of u. Such a fixed point is a reasonable 
notion of a weak solution. It turns out that the space of Lipschitz continuous 
functions is a natural class of functions in which to formulate this. One can 
then develop sufficient conditions on the coefficient functions for there to exist 
a unique such weak solution (globally) as well as sufficient conditions for it to 
be a classical solution. Most of this chapter seems to be taken from Freidlin's 
own work, published in the late 60s. 

The final two chapters of the book cover an interesting application of the 
asymptotic methods of Chapter 4 to the study of wave-like properties of 
solutions to 

(9) ut=\uxx + ƒ ( « ) , 

where f>0 only if 0 < u < 1. One might think of u(t9 x) as the concentration 
of a diffusing substance with the nonlinear term f(u) describing the rate of 
generation of the substance as the result of a density-dependent reaction. It 
turns out that such equations can have "traveling wave" solutions, u(t, x) = 
V(x — at) where the function V(-) describes the wave shape and a its velocity. 
Of course one can study such solutions by plugging u = V(x - at) into (9), 
obtaining a nonlinear eigenvalue problem for the pair (a, V(-)). However an 
asymptotic rescaling allows the velocity a to be isolated. To wit, ue(t9 x) = 
u(t/e, x/e) satisfies 

(io) Ytu°=lu**+\f{ut)-
Now if the "wave" is an advancing region of saturation, i.e. u ~ 1 for x «: at, 
u ~ 0 for x » at, or simply 

lim V(z) = 1, lim V(z) = 0, 
Z-+-0O Z-++O0 

then since ue(t, x) = V{ ), 

(ii) „•(,,,)-. {I HI" «.to. 
Applying techniques of large deviations analysis to (10) one can study the 
speed a by means of property (11). This technique allows one to isolate a from 
the wave form V(-). Chapter 6 studies (10). Some very interesting phenomena 
can occur if spatial inhomogeneity is allowed in (10), such as the appearance of 
new saturated regions at a positive distance from previously saturated points. 
Such features end up being described as properties of the variational problems 
arising in the large deviations asymptotic analysis. Chapter 7 considers the 
influence of averaging effects in random or periodic media producing an 
effective or asymptotic velocity in similar problems. Again the general discus­
sions of these chapters is supplemented by numerous specific examples which 
illustrate various possible special phenomena. 

There is a wealth of material in this book. I have mentioned the large 
number of illustrative examples already. Theoretical ideas and methods are 
well demonstrated in the formal proofs as well. I think that even most experts 
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will find several new and interesting considerations discussed. I certainly did. I 
noticed only a few typos. The bibliography is reasonable, but might be 
criticized for lacking more current references to the work of western scholars. 
However this would be a petty criticism to make in light of the author's 
personal circumstances. 

From 1979 until just recently, Mark Freidlin struggled under severe restric­
tions on his academic activity imposed by the Soviet authorities. He is a 
refusenik, his applications to emigrate having been denied and having brought 
him into disfavor with the authorities. Both he and his wife were unemployed 
during this period, barred from participation in academic activities, receiving 
little of their mail and quite possibly denied access to university library 
facilities. It is a wonder that he was able to continue to produce timely and 
high-quality scientific work and of such size and scope as the book being 
reviewed here. This book represents not only an impressive contribution to the 
mathematical literature, but a monument to human courage and dignity. In 
March, 1987 he was finally granted permission to emigrate and will be taking a 
faculty position in this country. 
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Applied nonlinear analysis, by Jean-Pierre Aubin and Ivar Ekeland. John Wiley 
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From its very beginnings, two main themes have dominated analysis: the 
solution of equations and the study of (restricted) minima. They were never far 
apart, because necessary conditions for a minimum often appear in the form of 


