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ON REAL QUADRATIC FIELDS 

GILLES LACHAUD 

1. Introduction. It is now well known that there are only nine imag­
inary quadratic fields Q(\/^3) with class number h(—d) equal to one. We 
refer to the article of Stark (1969) for a detailed survey on this topic. This 
result has been previously obtained under a variant of the Riemann hypoth­
esis (hypothesis (H) below). When one seeks for an analog of this result for 
real quadratic fields, it becomes clear that the hypotheses need to be adapted, 
indeed it is likely that there are an infinity of real quadratic fields with class 
number one. In place of the number h(d), we consider here the number K,(d) 
of reduced primitive quadratic forms of discriminant d, as explained below. 
One has /c(d) = h(d) for d < 0, but certainly not for d > 0. 

Let K be a, real quadratic field of discriminant d > 0. A primitive binary 
integral quadratic form of discriminant d is a polynomial 

Q{M, N) = AM2 + BMN + CN2 <E Z[M, N] 

for which g. c. d.(A, B, C) = 1 and B2 - 4AC = d. We write Q = [A, B, C\. 
Denote by Q{d) the set of primitive binary integral quadratic forms of dis­
criminant d. The group T0 = GL(2, Z) operates on Q(d) and the quotient 
space TQ \ Q(d) is canonically isomorphic with the group H(d) of wide ideal 
classes of K. A form Q = [A, B, C] is called reduced if it fulfills the conditions 

(R) A>0, J 3 < 0 , C < 0 , \B\<Vd, Vd- \B\ < 2A < yfd+ \B\. 

The number Ac(d) of elements of the set Qred(d) of reduced forms with dis­
criminant d will be called the caliber of the field K — Q(v/d). The conditions 
(R) imply Max(|A|, |J5|, \C\) < \[d, hence the number /c(d) is finite. Let 
Q = [A, B, C] 6 Q(d), where A > 0, and write 

Q(M,N) = A(M - Nx)(M - Nx'), 

where we assume x > x'. Write the continued fraction expansion of x as 

with primitive period (ro , . . . , r m _ i ) . When considered up to circular permu­
tation, this primitive period is unchanged if we replace Q by an equivalent 
form, and therefore only depends on the class C of Q\ the length m(C) of this 
primitive period we call the caliber of the class C (or of the form Q, or of the 
number x). If the form Q is reduced, the reduced forms which are equivalent 
to Q are exactly those which are obtained by a circular permutation of the 
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period of the roots. Thus the number of elements in QTed(d) of each class C 
is equal to its caliber ra(C), hence: 

K{d)= J2 m(°)-
C€H(d) 

2. General results. Let <j) = (1 + v/5)/2 be the golden section, and let 
€o(d) be the fundamental unit of the field K = Q(\/5)-

THEOREM 2 . 1 . For every class C of K, one has 

m(C) log<j) < loge0{d) < m(C) log Vd, 

and this result is best possible. 

This theorem is classical; the first inequality is explicitly stated in Vija-
yaraghavan (1927). From these inequalities we obtain 

/c(d)log</> < h(d) logco(d) < K,(d) log Vd; 

since SiegePs theorem (1935) tells us that 

log(/i(d)loge0(c?)) ~ \ogVd, 

we deduce 

(*) log K,(d) ~ log \fd, 

and therefore: 

THEOREM 2.2. There is only a finite number of real quadratic fields with 
a given caliber. 

The estimate (*) is not effective. But let us however introduce the hypoth­
esis 

(H) ? ( l / 2 , l f ) < 0 . 

Here ç(s, K) denotes the zeta function of K. Hypothesis (H) clearly is a 
consequence of the Generalized Riemann Hypothesis on ]0,1[. 

THEOREM 2 .3 . Under hypothesis (H), one has 

h(d)\og€o{d) < u>i/c(d), 

with CJI < 4.230... . 

For d = 0 (mod 4), Golubeva (1984) has proven the following inequalities: 

(7/TT2)/C(OO(1 + 0 ( 1 ) ) < h(d)logc0(d) < (10/7T2)/c(d)(l + o(l)), 

but her result is ineffective. From Theorem 2.3, making use of the trivial 
lower estimate eo(d) > (d — 3)1/2, we deduce that 

d < exp(2u1K,(d)/h{d)) + 3. 

3. Fields with caliber one. By definition, every field with caliber one 
is principal. If a reduced quadratic surd x > 1 is of caliber one, then one has 
x = r + (1/x) with some r > 1, i.e., x = (l/2)(r + (r2 + 4)1/2). Let t be a 
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squarefree natural integer. The principal class of Q(y/i) is of caliber one if 
and only if one of the following holds 

(I) t = r2 + 4 where r = 1 (mod 4); 

(II) At = r2 + 4 where r = 2 (mod 4); 

the quadratic surd x above is then the fundamental unit (with norm —1) of 
Q(v^); these facts go back at least to Richaud (1866). From Theorem 2.3 we 
deduce 

THEOREM 3 .1 . Under hypothesis (H), the only real quadratic fields with 
caliber one are the seven fields Q(\/ï) with t = 2,5,13,29,53,173,293. 

In the same vein, one also has 

THEOREM 3.2. Under hypothesis (H), the only principal real quadratic 
fields with d = r2 + 1 = 1 (mod 4) are the six fields Q(\/£) with t = 5,17, 
37,101,197,677. 

This theorem has been the subject of a question of Chowla for many years: 
cf. e.g. Chowla and Friedlander (1976). The fields considered in Theorem 3.2 
have caliber 3, but they contain an order with caliber one. Çallialp (1980) has 
proven that hypothesis (H) is satisfied for the real quadratic fields with dis­
criminant d = r2 + 1 = 1 (mod 16). We thus have the following unconditional 
result: The only principal real quadratic field with discriminant d = r2 +1 = 1 
(mod 16) is the field Q(v

/Ï7). However, one can prove this easily, using the 
fact that 2 splits in such a field. 

4. An analytical result. We now look at the zeta functions of classes 
with small caliber. Let (K{) be an infinite sequence of real quadratic fields, 
set d{ = disc (ifi). Let Ci be an ideal class of Ki with caliber m^. Assume 
moreover that logm^ ~ qlogdi with q € [0, l/2[. Let A > 0. 

THEOREM 4 . 1 . If di is sufficiently large, the partial zeta function f(s, Ci) 
of the class Ci has exactly one zero Si in the interval [1 - (A/logc^), 1]; if 
Si = 1-T."1 , then 

logTi~((l/2)-q)logdi. 

In other words, the first part of the theorem says that the partial zeta 
function ç(s,d) does have a Siegel zero. 

5. The method: A formula of Hecke and iJ-functions. For Q = 
[A, JB, C] in Q(d), let HQ be the upper half-circle in the Poincaré upper half-
plane H whose equation is 

A{X2+Y2) + BX + C = 0. 

Let T = SL(2,Z), and let TQ be the subgroup of proper integral automor­
phisms of the form Q. Set X = T \ H and XQ =TQ\ HQ. The curve XQ is 
a closed primitive geodesic of X, and all the closed primitive geodesies of X 
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are of this form. For Re(s) > 1 we define 

Z*(S ,Q)=7r- s<f/2r(8 /2)2 J2 Q(m,n)-S, 
(m,n)GZ 2 / rQ 

£'(*,*) =ir_T(«)?(2«) J2 (Imz)s/\mz + n\2a. 
(ra,n) = l 

The functions E*(z, s) are the usual Eisenstein series. They admit a mero-
morphic continuation to the complex plane, with poles at s = 0 and 3 = 1. 
They are invariant under s —> 1 — s. A formula of Hecke states: for s / 0,1 

Z*(s,Q)= f E*(z,s)\dQz\ 

for a suitable differential CIQZ. We refer to Hecke (1917), Lang (1970), Zagier 
(1975), Wielonsky (1984) for several proofs and applications of this equation. 
If x and x' (x > x') are the roots of Q, a parametric representation of HQ is 
given by <p(\) = (x + i\x')/{l + iX) (0 < A < oo). Let x\ = l/(x - [x]) and 
set 

JQ = {>p(X)\\x'1\<X<x}cHQ. 
Let YQ be the image of the path JQ in XQ. For s ^ 0,1 define 

JT (* ,Q)= ƒ E*(z,8)\dQz\, 
JYQ 

and let üf(s, Q) be the function such that 

H*(s,Q) = 7T-3d9/2r(s/2)2H(s,Q). 
If the primitive period of x is (xo, . . . , a;m-i), we set Yn = YQ for 

Q{M,N) = (M - Nxn)(M - Nx'n) (0 < n < m - 1). 
PROPOSITION 5 .1 . TTie geodesic XQ is the disjoint union of the paths 

Yn, for 0 < n < m — 1, and 

0 < n < m - l 

We have thus obtained a decomposition of the function Z(s,Q) as a sum of 
functions H(s,Qn) indexed by the primitive period of Q; this decomposition 
relies on the same principles as those of Shintani (1976) and Zagier (1977), but 
here the functions H(s, Q) are no longer Dirichlet series. Using the asymptotic 
expansion of Eisenstein series at s = 1/2 (cf. Chowla-Selberg (1967)), and the 
fact that Im(z) > 1/2 for z € YQ, we obtain the following result. 

PROPOSITION 5.2. Let 7 be the Euler constant and let 

u = TT/2 + log 87T - 7 = 4.217... ; 

let k = UQ = y/d/dQ. We then have 

d^HiX/^Q) = k^2(\ogk- w) + fl(Q), 

tó/i -1 /50 < R(Q) < 1. /n particular if kQ > 69 tóen #(1/2 , Q) > 0. 

Proposition 5.2 immediately implies Theorem 3.1: Indeed, if K is a field 
with caliber one and if Q is the principal form of K, one has 

H(s,Q) = Z(s,Q) = çK(s). 



ON REAL QUADRATIC FIELDS 311 

Theorem 2.3 also follows from Proposition 5.2 and from the standard convexity 
inequalities; one can take uj\ = UJ -f (1/80) in these theorems. Theorem 4.1 is 
proved using an "asymptotic limit formula." This formula is obtained from 
Hecke's formula when s —» 1, in much the same spirit as in the work of 
Goldfeld (1976); see also Goldfeld-Schinzel (1975). 
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