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T H E ARNOL'D FORMULA FOR ALGEBRAICALLY 
COMPLETELY INTEGRABLE SYSTEMS 

J.-P. FRANÇOISE 

Let F: Vn —» R m be a real algebraic mapping and let us denote b y D c R m 

the set of its critical values. We assume that F:Vn \ F~X(D) —• R m \ D is 
a proper topological fibration so that we can consider the real monodromy of 
F defined as the action of 7n(Rm \ D) on H*(F~l(c), Z), c e R m \ D. We 
propose to study the real monodromy of mappings F which are defined on a 
symplectic manifold (V2m, u) and whose generic fibers are Lagrangian for the 
symplectic form u. Such mappings are momentum mappings of integrable 
Hamiltonian systems. This particular case is interesting because we know 
well the topology of the fibers [Fo] and because the real monodromy relates 
to the monodromy of the actions of the integrable system [D] via the Arnol 'd 
formula [AR]. In that case, the connected components of the fibers are tori. 
When F is associated to a symplectic action of a torus, the fibers are connected 
[At]; in some cases they may be not connected (as in example (c)). 

If c0 € R m \ D, there is a neighborhood U = F-X{T), c0 eT cRm \D 
which retracts by deformation on the fiber F_1(co). On J7, there is a 1-form 
rj [GS] such that u\u = drj. Let 7y(c), j = l , . . . , ra , c G T, be a set of 
generators of Hi(F~1(c), Z), c G T; we define locally on U the actions pj by 
the Arnot'd formula [Ar]: 

Pj = V-

To the symplectic form OJ\U = YlT=i dFiArji is associated the period matrix 
ipij = L.(c\ Vi a n d the Stokes formula gives 

dpj/dFi = F*tl>ij [HÖ]. 

Two types of obstructions to the global existence of actions have to be 
carefully distinguished. If H2(V2m,Il) ^ 0, the cohomology class of u is an 
obvious obstruction of topological nature [D]. If OJ is exact, the nonexistence 
of global actions can be expressed precisely by the multivaluedness of the 
Arnol'd integrals. It is then an obstruction of analytical nature. 

For algebraically completely integrable systems (we refer to [AM] for a com­
plete definition), one can introduce another monodromy. We will denote again 
the complexified mapping F: Vçm —» C m and DQ C-> C m its set of critical 
values. Let us assume that there is a family of curves Cc {c G Cm) generi-
cally smooth of genus g such that its discriminant A contains Dc and such 
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that the Hamiltonian flows Xj of the Fj induce linear flows on the Jacobian 
of Cc. Given an a.c.i. system, there might be several associated curves per­
haps of different genuses (for instance, the Lagrange top [RM]; see also [AM, 
Ha]). According to Picard-Fuchs theory as exposed in [BK], associated to 
the bundle C with fiber Cc over C m \ A, there is a monodromy that we call 
the monodromy of the curve C. For hyperelliptic families, it has been studied 
in [Ac]. 

THEOREM. If g > m, for any c € C m \ A, the value ofi/^ij at c is a sum 
of Abelian integrals of the first kind on Cc> 

COROLLARY. TO compute the actions, one has to determine the generators 
lj (c) °f the real tori and to integrate the period matrix tpij. 

It might be quite complicated to find the real generators in the complex 
tori. See [NV] for a general "algebro-topological" program. Following these 
steps, one gets new derivations of the preceding results for the action-angles of 
the Toda Lattice [FM, M], Neumann system [Mo], and a new computation 
for the Kowalevskaya top [Pr]. 

EXAMPLES, (a) The Euler top, when complexified, is a.c.i. with nontrivial 
curve monodromy, but it has no monodromy of the actions. The set of critical 
values of the reduced system (Fi,!^) is the union of three half-lines (F\ = 
AF2, Fi = BF2, F\ — CF2 , F2 > 0; A, J5, C are the diagonal components of 
the tensor of inertia). Thus 7Ti ( R 2 \ J D ) is zero and there is no real monodromy. 

(b) The spherical pendulum was studied in [D and C]. The set of critical 
values D contains an isolated point, so there is a possibility of real monodromy, 
and in fact Duistermaat proved that the actions have monodromy. The system 
is a.c.i. for the family of elliptic curves z1 = $c(w) = 2(F\ — w) • (1 — w2) — F2 . 
Since g < m, one cannot apply the theorem, but a direct computation gives 
the actions as integrals over paths in the curve of abelian forms of the three 
possible kinds. 

(c) The Kowalevskaya top. The set of critical values D is of codimension 
1, so there is no real monodromy and no monodromy of the actions. The 
topology of the fibers studied by [K] changes following bifurcations described 
recently in a quite general set-up by Fomenko [Fo]. The number of connected 
components of the regular fiber is 1, 2, or 4. The monodromy of the curve is 
not trivial. The Theorem gives a method to compute the actions as integrals 
over paths on the curve Cc. Even so there is no monodromy of the actions; 
they are not globally defined, as shows the explicit expression obtained [Fr]. 
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