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BMO ON THE BERGMAN SPACES 
OF THE CLASSICAL DOMAINS 

C. A. BERGER, L. A. COBURN AND K. H. ZHU 

Let Ü be a bounded symmetric (Cartan) domain with its Harish-Chandra 
realization in C n [T]. For dv the usual Euclidean volume measure on C n = 
R2 n , normalized so that v(Q) = 1, we consider the Hubert space of square-
integrable complex-valued functions L2 = L2(Q,dv) and the Bergman sub-
space H2 = H2(Q) of holomorphic functions in L2. The self-adjoint projection 
from L2 onto H2 is denoted by P. For ƒ, g in L2, we consider the multiplica­
tion operator Mf on L2 given by Mjg = f g and the Hankel operator Hf on 
L2 given by H f = (I — P)MfP. For ƒ in L2, these operators are only densely 
defined and may be unbounded. The commutator [Mf,P] = MfP — PMf is 
densely defined on L2 and may also be unbounded. From the equations 

[Mf,P] =Hf- Hj, (I - P)[Mf, P) = Hf, [Mf, P](I -P) = -Hj, 

it follows that [Mf, P] is a bounded operator if and only if H f, Hj are bounded. 
Moreover, [Mf, P] is a compact operator if and only if i / / , Hj are compact. 

In earlier work [BCZ], it was shown that for ƒ in L°°(n), the algebra 
of bounded measurable functions on Q, [Mf,P] is compact if and only if 
ƒ has vanishing mean oscillation at the boundary dQ, where oscillation is 
defined in terms of the Bergman metric on Q. In this note, we announce 
the companion result: For ƒ in L2, [M/,P] is bounded if and only if f is of 
ubounded mean oscillation on Ü ", where oscillation is defined as in [BCZ]. The 

space of such functions is denoted by BMO(H). We also obtain the expected 
result that: For ƒ in L2, [M/, P] is compact if and only if f is in the subspace 
VMOa(H) of functions which have vanishing mean oscillation at the boundary 
dfl. Our results are analogous to known results for arc-length measure on the 
unit circle [G, p. 278] and demonstrate the value of the Bergman metric in 
function-theoretic analysis on the classical domains. 

Let K(-,a) be the Bergman reproducing kernel in H2(Q) for evaluation at 
a e H. For 

fca(.) = / f(a ,a)-1 /2 / f ( . ,a) , 

we define the Berezin transform of ƒ in L2 [BCZ] by 

/(a) = (fka,ka) 

where (•, •) is the usual L2 inner product. For typographical reasons, we write 
the Berezin transform of | / |2 as ( | / |2)~. It follows from known properties of 
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the {ka} that ƒ is defined and smooth (C°°) everywhere on Q. The transform 
ƒ is critical to our analysis as are some previously unremarked properties of 
the Bergman metric /?(•, •) on Q [K, p. 45; H, p. 298]. In the remainder of 
this note, we provide enough detail to rigorously state our main results and 
the main technical lemmas required for the proofs. 

We recall that the Bergman metric /?(•,•) is a complete Riemannian metric 
on H which gives the usual topology on H [H, p. 52]. Moreover, the closed 
metric balls 

E(a,r) = {z:P(a,z)<r} 

are compact [H, p. 56]. By definition [K, p. 45], f3 is the "integrated form" 
of the infinitesimal metric 

By z —• dÜ, we mean that the usual distance function 

d{z, dQ) = inf{\z - w\: w G dû} 

has the property that d(z, dû) —• 0. Let BC(H) denote the algebra of bounded 
continuous functions on H, with Ca(H) the subalgebra of all continuous func­
tions for which f{z) —* 0 as z —» dû. For ƒ continuous on Ü, we define 

Osc*(/) = sup{|/(2) - f(w)\:P(z,w) < 1}. 

It is not hard to check, using the completeness of /?, that Osc^(/) is also a 
continuous function of z. We say ƒ is of bounded oscillation (ƒ € BO(Q)) if 
Osc^(/) is in BC(H) (as a function of z). We say ƒ is of vanishing oscillation 
at dQ (ƒ G VOa(fi)) if Osc^/ ) is in Ca(H) (as a function of z) (cf. [BCZ]). 
For ƒ in L2, the quantity 

MO(/,z) = ( | / | 2 TO- | />) | 2 

is a continuous function on Q. We say ƒ is of bounded mean oscillation on 
Ü (ƒ € BMO(H)) if MO(/, •) is in BC(Q). We say ƒ has vanishing mean 
oscillation at dû (ƒ G VMOa(H)) if MO(/, •) is in Cd(Q). 

We also have a more geometric notion of mean oscillation. Let \E(z, r)\ = 
v(E(z, r)). For fixed r > 0 and ƒ in L2, the quantities 

f(z,r) = \E(z,r)\-1 [ f(w)dv(w), 
JE{z,r) 

MOr(f,z) = \E(z,r)\~1 f \f(w)-f(z,r)\2dv(w) 
JE(z,r) 

= \\E{z,r)\-* f f \f(w)-f(u)fdv(w)dv(u) 
L JE(z,r) JE{z,r) 

are continuous functions on H. We say ƒ in L2 is in BMOr(Q) if MO r(/, •) is 
in BC(O). We say ƒ in L2 is in VMO^(H) if MO r(/ , •) is in Gd{Q). 

We require a few additional definitions. We write 

? " = { ƒ € L2: ( l / l 2 ) - € BC(n)}, I = {ƒ € L2: ( | / |2)~ € C a(0)}. 
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Clearly, J C BMO(Q) and I C VMOa(Q). For S any subset of Q, we write 

II/IIBMO^^SUPMOC/,^)1/2 

zes 
and 

||/||BMO = II/IIBMOCQ), ll/Hr = supMO^/,*)1/2. 
zen 

Our main result is 
THEOREM A. For f in L2, the following are equivalent: 

(i) Hf,Hj are bounded. 
(ii) / G B M O ( H ) . 

(iii) ƒ e BMOr(H) for all r > 0. 
(iv) ƒ G BMOr(H) /or some r > 0. 
(v) ƒ G BO + J . 

Moreover, the quantities max{\\ H f \\, ||-ffy||}, | |[M/,P]||, || ƒ ||BMO? arcd||/||r 
are equivalent and ƒ is in BO lütïA f — f in J whenever any of (i)-(v) hold. 

We also have a corresponding extension of the main result of [BCZ]: 

THEOREM B. For ƒ in L2, the following are equivalent: 
(i) Hf,Hj are compact. 

(ii) /GVMOa(H). 
(iii) ƒ G VMO^(Q) for all r > 0. 
(iv) ƒ G VMO£(H) /or some r > 0. 
(v) /GVOa(H) + J. 

Moreover, ƒ es m VOa(Q) and f — f is in I whenever any of (i)-(v) hold. 

For x in C n and z in H we define 
n n 

For ƒ in H2 and 2 in Q we have the analytic gradient 

*•'-(&"•£<"•••••&<'>) 
and we can define, as in [T], 

Q / ( ^ )=sup{ | (V 2 / , x ) | J f f (2 , a ; ) - 1 / 2 : 0 / a : eC"} . 

Following [T], we say ƒ is in the Bloch space B(Q) if 

SUpQ/(*) = ||ƒ||fî < 0 0 . 

zeci 
We say ƒ es in the little Bloch space BQ(Q) if 

lim Qf(z)=0. 
Z—+OU 

For ƒ in üf2, it is easy to see that H f = 0. In this case, we obtain some 
additional information: 

THEOREM C. For ƒ in H2, Hj is bounded if and only if ƒ is in B(Q). 
Moreover, \\Hj\\ and | | / | | B are equivalent quantities. 
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THEOREM D. For f in H2,Hj is compact if and only if f is in B0{ïï). 
For rank (H) ^ l,Bo(H) consists of just the constant functions. 

The proofs of Theorems A and B depend on two key results about the 
Bergman metric and the Berezin transform. 

THEOREM E. The function /3(0, •) is in Lp(iï,dv) for all p > 0. 

THEOREM F . For any smooth curve 7: ƒ - • fi (ƒ = [0,1]) with s = s(t) 
the arc-length of ̂  with respect to the Bergman metric {g%j{z)), and for any ƒ 
in BMO(Q), we have 

l'"w» < 2 v ^ ) | m | B M O ( , ( / ) ) -

We also use a recent result of [FK] and some estimates from [BCZ]. Proofs 
will appear elsewhere. 

It should be recalled that, as z —• dQ, 

/?(0, z) - • + 0 0 , K(z, z) - • + 0 0 . 

The point of Theorem E is that, for bounded symmetric domains Q, /?(0, z) 
does not blow up too badly near dQ. 

REMARK. The function /?((),•) is the prototype of BO(Q). Using the 
invariance of the metric /?(•,•) under automorphisms of Q and Theorem E, it 
is easy to check that /?(0, •) is in BMO(n). The function exp{i/?(0, -)1/2} 

is m 
VMOa(H), as noted in [BCZ]. 

The measure dv(z) may be replaced by Harish-Chandra measures of the 
form CtK(z, z)1 dv(z) with t < to{Q) and Theorems A and B remain true. We 
conjecture that Theorems A and B hold, with different proofs, for domains 
considerably more general than the bounded symmetric (Cartan) domains. 
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