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ARGUESIAN LATTICES WHICH ARE NOT LINEAR 

MARK D. HAIMAN 

ABSTRACT. A linear lattice is one representable by commuting equiv
alence relations. We construct a sequence of finite lattices An (n > 3) 
with the properties: (i) An is not linear, (ii) every proper sublattice 
of An is linear, and (iii) any set of generators for An has at least n 
elements. In particular, An is then Arguesian for n > 7. This settles a 
question raised in 1953 by Jónsson. 

1. Introduction. A lattice L is linear if it is representable by commuting 
equivalence relations. Jónsson [6] showed that any such lattice is Arguesian. 
Numerous equivalent forms of the Arguesian law are now known; it is a strong 
condition with important applications in coordinatization theory [1, 2]. Nev
ertheless, the question raised by Jónsson, whether every Arguesian lattice is 
linear, has remained open until now. 

Here we describe an infinite family {An} (n > 3) of nonlinear lattices, 
Arguesian for n > 7 (and possibly for n > 4), settling Jonsson's question in the 
negative. Actually, we obtain more: a specific infinite sequence of identities 
strictly between Arguesian and linear, and a proof that the universal Horn 
theory of linear lattices is not finitely based. 

2. The lattices An. Let n > 3. In what follows, all indices are modulo n, 
i.e., Xi+i means xo when i — n — 1, etc. Let Ln be the lattice of all subspaces 
of a vector space v (dim v = 2n) over a prime field K with at least 3 elements. 
Let {ao , . . . , a n _ i , /%, . . . , /?n-i} be a basis of v. Let 

(1) m = ( a 0 , . . . , û ! n - i ) , Qi = ({oij\j ^i}), Pi = ft A$+i , 

n = mV(/3»), Si = r»-i Vf», 

where ( • •) denotes linear span. Let 

(2) An = [0,m] U [m, v] U \J[Pi,n] U (Jfe, * ] , 
i i 

where [x,y] = {z\x < z <y}. 
An C Ln is a sublattice; the intervals in the union (2) are its maximal 

complemented intervals, or blocks; they are the blocks of a tolerance relation 
on An [5]; as such, the set S of blocks acquires a lattice structure; specifically, 
0s = [0,ra], Is = [m,v], ai = {pi^n] are atoms, bi = [q^Si] are coatoms, and 
a>i <bi, 6i+i defines the order relation. 

Let m (dimm = n) be another vector space, with basis {ao, . . . , â n _ i } . 
Define pz, q{ by analogy with (1). Let F = |JJpi,v]; F C An is an order 
filter. Within jP, Ui[P*>m] *s a n order ideal. Set up a "twisting" isomorphism 
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T of UJPi)m] W ^ n t n e order filter Ut[P*>^] c [0,w] ^ follows: for each 
i, the atoms of [j^,m] are of the form {rôti + $âi+i,âi+2,. . . ,âi_i) where 
(r : 5) is a ratio of elements of K. Put r ( p j = p», r(ra) = ra, and r((râi + 
sat+i,â»+2,.. . ,âi_i)) = (ra* + sat+i ,at+2, . . . ,a»_i) except, when i = 0, 
pw£ 

r((râ0 -f 5 â i , â 2 , . . . , â n _i ) ) = ( - r a 0 + sai , «2 , . . . , a n - i ) . 

This definition is consistent on q{ and makes r ( ç j = (fr. 
Let 

An = FU[0,m]/(x = r ( x m U [ - - r 

An is a modular lattice and has the same block decomposition (2) as An, 
hence the same skeleton lattice 5. Composing r with the automorphism of 
[0,m] induced by the linear transformation Q.\ H-> —ôt\, . . . ,cEfe H-> -âfc, other 
c?t fixed, shows that the exceptional interval [p0, m] in the definition of r could 
as well have been [pfc,m], up to an isomorphism of An respecting the p^ (fc, 

3. Properties of An. 

THEOREM. An is not a linear lattice. 

PROOF. In [3], the author introduced "higher Arguesian identities" 

n - l 

Dn: a0A(a'0V /\ [a{ V oj] ) 

n - l 

< ax V ( (a'0 V a[) A \ / [(a* V a i + 1) A (a{ V a<+1)] ) 
i = i 

which hold in all linear lattices. D3 is the Arguesian law [4]. If we take 
<H = Pi + (P%) for all z, aj = pi -f (A + a» + a<+i) for i ^ 0, and a'0 = 
Po + (A) — <*o + UI ) , Dn fails in An. In particular, A3 is not Arguesian. This 
minimally non-Arguesian lattice was discovered by Pickering [8]. 

THEOREM. Every proper sublattice of An is linear. 

PROOF. U;[P*>r*] generates An, so a proper sublattice N C An will have 
Nn[pi,ri] C [pi, r*i] strictly for some i. We can assume [pi, m] is the exceptional 
interval in the definition of r. We show \pi,ri] (which is a projective plane over 
K) possesses an automorphism fixing Nf) [q^u] and Nd [g»+i,ft] and acting 
as T on N D [pi, m]. This is proved by classifying maximal proper sublattices 
of [pt, r»] and their possible orientations relative to ra, &, <fc+i, which leads to 
13 cases to check, some trivial, none difficult. 

It follows that An has a sublattice isomorphic to iV, so N is linear. 

THEOREM. If X C An generates An, then \X\ > n. 

PROOF. For each j , 0s U Is U (J»^ a i U U i ^ &* is a sublattice of An 

because {0s, lg} U {ai, b{\ i 7̂  j} is a sublattice of S. For each j , therefore, 
some Xj G X is an element of aj U bj and not an element of any other block. 
This requires n distinct elements of X. 
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4. Conclusions. The results of §3 imply that no finite set of identities, 
or even universal Horn sentences, can completely characterize linearity; in 
particular, the Arguesian law is insufficient, since it holds in An for n > 7. 
It is known, however, how to characterize linear lattices by an infinite set of 
universal Horn sentences [3, 7]. 

If, as appears likely, the identity D n - i holds in An (n > 4), we would 
have that D n - i does not imply D n , showing that {Dn} forms a hierarchy 
of progressively strictly stronger linear lattice identities. We remark that 
generator-counting will not suffice for this, since An has a set of generators 
X with \X\ = n + 3. We conjecture n + 3 is minimal, which would imply A4 
is Arguesian. 
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