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THE ASYMPTOTICS OF ep^ AND THE NUMBER 
OF ELEMENTS OF EACH ORDER IN Sn 

HERBERT S. WILF 

ABSTRACT. We answer a question that was raised in 1952 by Chowla, 
Herstein and Scott, concerning the asymptotic behavior of the number 
of elements of order m in the symmetric group Sn, for fixed m, as 
n —•• oo. The methods used include Hayman's method for asymptotics 
of coefficients of analytic functions, and the Lagrange inversion formula. 
The question had previously been answered only for prime m. 

1. Introduction. In 1952 Chowla, Herstein and Scott [2] asked for the 
asymptotic behavior, for large n, of the number ƒ (m, n) of solutions of the 
equation xm = 1 in the symmetric group Sn. They found the generating 
function and some recurrence relations for the f(m,n). 

In 1955 Moser and Wyman [4] found the answer when m = 2, i.e., they 
counted the involutions in Sn, for large n. Then they developed a method [5] 
that permitted them to solve the problem when m = p, a prime number. 

The problem is discussed further in Bender [10], §8.1. 
In this paper we will give an explicit answer that is valid for every m. 
The ingredients of the solution are the following. 
1° Hayman's method. In 1956 W. K. Hayman developed a general method 

for finding the asymptotic behavior of the coefficients of analytic functions 
(some later developments of the theory are in [11, 12]). This method has 
already had a number of applications to combinatorial problems. Hayman's 
machinery allows us to take the first step in the solution of the present prob
lem. 

The unfinished business that it leaves is that the answer is expressed in 
terms of a root of a certain equation, and that root must be determined with 
considerable accuracy in order to get an explicit asymptotic result. 

2° Lagrange's inversion formula. We will use the famous inversion formula 
of Lagrange to find the solution of the polynomial equation referred to above. 
Remarkably, what it gives is the root expressed as an infinite series that is at 
once convergent and asymptotic. 

The unfinished business that it leaves is that the coefficients of the series 
in question are given implicitly, but we want an explicit solution. 

3° Special properties. Until this point the analysis will have been quite 
general, and applicable to any problem of the type considered. To get explicit 
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values for the coefficients mentioned above, however, one has to use specific 
properties of the problem of the orders of elements of Sn. The most useful 
special property turns out to be this: if the order of an element divides m and 
is < m then it is < ra/2. (!) 

2. Statement of results. Let 

f(m,n) = \{xeSn\x
m = l}\. 

It was found in [2], and can also be obtained quickly from the exponential 
formula, that 

n>0 ' [d\m ) 

When m = 2, Moser and Wyman found that the number ƒ (2, n) of involutions 
of n letters satisfies 

(2.2) ƒ (2, n) ~ ±=nn'2 exp(-n/2 - 1/4 + y/n). 

If m is an odd prime p, they showed that 

(2.3) ƒ(p, n) ~ - L n ^ 1 - 1 / * ) exp(-n(l - 1/p) + n 1 ^ ) . 

The main result of the present paper is the following. Define 

/9 A\ _ ƒ l/(2ra2n) if m is even, 
l ^ 4 j £ r n , n - | 0 if m iS odd , 

and 

(2.5) = r(m,n) = n~^m ( l + — V n d /m + e m , n } . 

d<m 

Then for fixed m, as n —> oo we have 

(2.6) f(m,n)/n\ - ,- exp 
V27rmn 

It is easy to check that (2.6) reduces to (2.2), (2.3) in those special cases. 
If g(m, n) is the number of elements of Sn of order m then evidently 

g(m, n) = Y^ ^(rn/d)f{d, n) (m = 1,2,...), 
d\m 

hence the result (2.6) applies without change to g(m, n) also. 

3. The first step: Hayman's method. In his 1956 paper Hayman 
considered, among other problems, the question of the asymptotic behavior 
of {an} defined by 

(3.1) X>»*n = eP(2) 

n>0 
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where 
m 

(3.2) P{z) = YJclz
l 

1=1 

is a polynomial of degree exactly m. The conditions on P(z) are that 3no 3 
Vn > no : an > 0. He then showed that 

eP(rn) 
(3.3) an ~ (n -+ oo) 

V27rranr™ 
where rn is the positive real root of the equation 

(3.4) rP'{r) = n. 

The usefulness of this answer depends on our being able to estimate the 
root of (3.4) with sufficient precision to allow rJJ and ep(rn) to be estimated 
asymptotically also. In some applications of this method, such as to the 
growth of Bell numbers, this estimation has posed questions of extreme diffi
culty. In others it may be trivial. In this application it is do-able, as we will 
see. It is clear that for the root of (3.4) we have 

rn ~ (n/racm) 1 / m 

and therefore in order to estimate rJJ we will need rn itself with an error of 
o(n~1 + 1 /m) or better. This precision would also suffice for estimating ep^n^ 
in (3.3). 

Hence our next task will be to estimate the root of (3.4) with the required 
precision. 

4. The second step: Lagrange inversion. The form of the Lagrange 
inversion formula that we will use [9, p. 132] is this. If u = u(i) is the solution 
of the equation u = t<j>(u), where <f> is analytic in some disc centered at the 
origin, then 

(4.1) u(t) = £ A « 7 J > 

where each fii is the coefficient of ul~x in the expansion of <t>{u)1, and the 
expansion (4.1) converges in a suitable disc about the origin. 

To bring the equation (3.4) that we wish to solve into this form we put 
u = r"1 , t = n~1/ /m and 

( m ^ 1 / m 

^2 lcium~l \ = { u m - 1 P / ( l / u ) } 1 / m . 
It now follows from the Lagrange inversion formula that the solution r = rn 

of (3.4) is of the form 

r„ f-' Ml" (4-3) r = £ 
Tn i=i 

where 
(4.4) /?, = Coeff„.-i {[iim"1P'(l/ii)] ,/ 'n} (J = 1,2,...). 
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The series (4.3) is convergent, by Lagrange's theorem, for all sufficiently 
large n, and it is obviously asymptotic as well. 

For our present purposes there is more precision in (4.3) than we need. In 
order to estimate rJJ we will need only the terms / < m -f 1 in (4.3). We can 
summarize these observations in the following 

PROPOSITION. The coefficients {an} of (3.1) satisfy 

ep^ 

\j2nmn p™ 

where 
•i " ' T - " m+1 a 

PI 

Pn fri lnl/m 

and the /3's are given by (4.4). 

It remains to deal with the numbers /?/ of (4.4), which are presented there 
in a somewhat opaque fashion, as the (/ — l)st coefficient of a function which 
itself depends on /. 

5. The third step: a bit of luck. In order to proceed we must confront 
the specific polynomial 

p(*) = Xy/d 
d\m 

that we are interested in. First recall that the precision with which we need 
to know rn is 

(5.1) rn = n 1 / m + • • • + o ( r r 1 + 1 / m ) . 

Next, the /3's are the coefficients of 

!

\ l/m 

J2um~d\ 
d\m J 

( 5 > 2 x = {1 + Um-d> + ' ' • + Um-dk } l / m 

= l + - ( * / m - d 2 + - . . + Um-dfc) 
m 

+ 1-1--1) ^m~d2 + ' • • + um~dk)2 + • • • 2m \m ) 
Consider the powers of u that appear in the first parenthesis. Since e^ < 

m/2, m — d,2 > ra/2, and those exponents of u must lie in [ra/2,ra — 1]. 
In the square of that first parenthesis there appear exponents in the range 
[m, 2m — 2], and so forth. It follows that if all we need are /?i, /?2, • •., /3m+i 
then we will correctly find all of them by retaining only the terms shown in 
the last member of (5.2) above. 

More precisely, we have 

( 1 , if I = 1, 
(e: o\ ft — ) ^ /m ' if / = m — d + 1, d|m, d < m, 
^ ' ' | (1-1- l/m)/2m, if / = m -h 1 and m is even. 

I 0, for all other / < m -h 1. 
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Now from the expansion (4.3) we have 

V J rn n1/m m *-* nl-d/m+l/m nl/m v " 

d<m 

where €m,n is given by (2.4). 
The estimate (5.4) has the required accuracy, and so we obtain 

(5.5) 1 „ (l + î à î lV^+£* , ,* .}" 

where the ' ^ ' ' is a sum over the proper divisors d of m, and the result (2.6) 
is proved. 
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