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The mathematical study of dynamical systems, comprising ergodic theory, 
topological dynamics, and differentiable dynamics (depending on whether the 
setting is a measure space, a topological space, or a differentiable manifold), 
arose from theoretical physics, especially Hamiltonian mechanics and statisti­
cal mechanics, and has drawn heavily from number theory, harmonic analysis, 
and differential geometry for both techniques and examples. Here are three 
important examples of applications of combinatorics or number theory to 
dynamical systems. 

(1) Hadamard and Morse developed symbolic dynamics as a systematic way 
of making abstract dynamical systems susceptible to combinatorial analysis. If 
X is the phase space, or set of possible states, of a dynamical system, and 
T: X -> X is a transformation which "makes time go by", so that Tnx is the 
state at time « of a system which at time 0 is in state x, and if {X0, Xx) is a 
carefully chosen partition of X into two disjoint sets, then the doubly infinite 
0,1 sequence co(x) for which u(x)k = i if and only if ft€ Xi will capture 
much of the information in the entire trajectory (or orbit, or history) {Tnx: 
n e Z} of x. In this way, one can use combinatorial properties of the result of 
the "coding" x -> co(x) to study dynamically interesting properties of the 
system, such as the existence of periodic or recurrent orbits, the presence or 
absence of metric or topological transitivity or other mixing properties, and the 
entropy. 

(2) The theorem of Kronecker that if a is irrational then {na: « e Z ) is 
dense modi says, in dynamical terms, that an irrational rotation Ra of the 
circle is minimal: there are no proper closed invariant sets. WeyPs equidistribu-
tion theorem which states that {na: n e Z} is equidistributed modi (for each 
subinterval I of the circle, card{/:: 1 < k < n, (ka modi) e I}/n converges 
to the length of / ) implies that an irrational rotation of the circle is uniquely 
ergodic: there is only one Ra'invariant Borel probability measure on the circle 
(Lebesgue measure). Extensions and variations of these theorems have pro­
vided many nice examples in dynamical systems theory. 

(3) In the "small denominators" problems of celestial mechanics, the ex­
istence of a solution of an equation connected with a dynamical system 
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depends on the speed with which a parameter of the system can be approxi­
mated by rational numbers. The implications of this finding for the stability or 
instability of the system have been the subject of profound investigations by 
Poincaré, Siegel, Kolmogorov, Arnold, and Moser, among others. It may not 
be possible to convince everyone that all the results obtained in this way have 
actual physical relevance, but the general theory of dynamical systems devel­
oped in this century with the help of number theory, harmonic analysis, and 
geometry has certainly illuminated several aspects of theoretical physics. 

Dynamical systems theory has also begun to repay its debts to its supporting 
subjects—by producing new proofs, from a dynamical viewpoint, of known 
results, sometimes thus providing new unity to disparate results or new clarity 
to statements previously accompanied perhaps only by computational or 
obscure proofs; by producing new theorems in these subjects; and by leading 
to new questions and even new classes of questions in these older parts of 
mathematics. Thus the interplay of dynamical systems with number theory, 
geometry, and harmonic analysis continues to deepen and to enrich itself. 

Here are three examples of this phenomenon ( others can be found in [9]). 
(1) Another equidistribution theorem of Weyl says that if p is a polynomial 

with real coefficients, at least one of which is irrational, then {p(n):n e Z} is 
equidistributed modi. Dynamical proofs of this [1-4, 6-8] turn the tables by 
showing first that a (skew product) dynamical system built by looking at the 
polynomial p is uniquely ergodic and thus easily reading off the result. (The 
present book proves the denseness of {p(n):n e Z} by the same method. 
This is an easier argument which nicely illustrates the main ideas.) 

(2) The class of almost periodic functions and its extension, introduced by 
Bochner, of the class of almost automorphic functions, can be studied natu­
rally in a dynamic context. If ƒ is a bounded function on a group, say on the 
integers, then we can consider ƒ as a point in Kz

y where A' is a compact subset 
of C which contains the range of ƒ. Translation in Z produces the shift 
operator o:Kz -* Kz, for which (of )(n) = f(n + 1). Recurrence properties 
of the point ƒ in the Bebutov dynamical system (K z , a) are frequently related 
to properties of ƒ which are of interest to harmonic analysts. Work of Veech, 
Knapp, and Ellis, among others, has developed this connection in the cases of 
almost automorphic, distal, and point distal functions. 

(3) A famous theorem (the solution of a conjecture popularized by the Dutch 
mathematician Baudet in Göttingen in the 1920s) of van der Waerden, Artin, 
and Schreier says that if the natural numbers are divided into finitely many 
sets—N = SXU S1U — • USr—then at least one of these sets contains arbi­
trarily long arithmetic progressions—there is a j = 1,2,..., r such that given 
any / = 1,2,... we can find j , / 6 N such that s, s 4- /, s 4- It,..., s 4- It e SJ. 
An extension of this result was conjectured by Erdös and Turân, and Erdös of 
course also offered a monetary reward ($1000—he knew it was a hard 
problem) for its solution: Any subset of N which has positive upper density 
contains arbitrarily long arithmetic progressions. After Roth showed that one 
could always find arithmetic progressions of length 3 in any subset of N with 
positive upper density, Szemerédi gave the (difficult and intricate) proof of the 
full conjecture and claimed the reward. Furstenberg, inspired by a lecture in 
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which K. Jacobs described Szemerédi's new theorem, saw how to prove these 
results on the basis of topological dynamics and ergodic theory. Together with 
collaborators such as Katznelson, Weiss, and Ornstein, he has continued to 
work out the details, ramifications, improvements, and extensions. The present 
book is an exposition of these results at one stage in their (still continuing) 
development. 

It is not surprising that the young subject of dynamical systems should call 
upon established areas of mathematics like number theory, harmonic analysis, 
and geometry for support when it needs techniques and examples, but how is it 
possible that an apparently abstract and imprecise subject like ergodic theory 
(dealing in qualitative and almost everywhere statements) could have anything 
important or informative to say about that crystalline kernel of the mass of 
mathematics, combinatorial number theory? I can give a vague and a precise 
indication of an answer. For the vague indication, please excuse some momen­
tary philosophy. The idea of recurrence is the hinge connecting ergodic theory 
and combinatorial number theory: in the one, it determines stabilities and 
rhythms, while in the other it is the ultimate basis of repeated patterns. Indeed, 
there cannot be patterns without some sort of recurrence, and the task of all 
branches of mathematics is the search for patterns, just as for all of science it is 
the search for recurrent, hence to some degree predictable, phenomena. It is no 
accident that the parts of number theory and harmonic analysis which rely the 
most on recurrence phenomena are the ones which are the ripest for dynamical 
applications and investigation from the dynamical viewpoint. 

For the precise indication, given S c Z with positive upper density (in fact, 
what Furstenberg calls positive upper Banach density, 

card(S n / ) A 
h m S U P cardm > 0 ' 

card(/)^oo Ca rd^ i J 
ƒ an interval 

is good enough), let X c (0,1}Z be the orbit closure under the shift a of the 
characteristic function x^ of 5 (another Bebutov system), and let A = {x e X: 
JC(0) = 1). Then (X9o) is a dynamical system whose properties are related to 
the combinatorial properties of the point Xs G %—especially when recurrence 
is involved. We want to find arithmetic progressions of arbitrary length, /, in 
S. What does it mean to say that s, s + t, s + 2 / , . . . , s + // e SI Of course, 
just that xs(s) = Xs(s + 0 = Xs(s + 2f) = • • • = Xs(* + &) = L This 
would follow immediately if we knew that A n T~'A D T~2tA n • • • C\T~ltA 
* 0 : for if oi <EA n T'A n T'2tA n • • • O T~ltA, then <o(0) = co(f ) = 
co(2r) = . . . = oo(lt) = 1. Since co G X = closure of orbit of Xs un<^er °> 
there is an s such that the initial (// + l)-block of co agrees with the initial 
(It + l)-block of asxs- Then Xs(

s) = Xs(* + 0 = Xs(s + 2 0 = ' ' ' = XsO 
+ It) = 1. To prove that given / one can find t with A O T'lA n T2tA 
n • • • nT~ltA =£ 0 , one makes the problem more general (therefore harder) 
and more abstract (therefore easier). The proof will be complete if one can 
show (1) there is a a-invariant measure fi on (0,1}Z for which the set A above 
has \x(A) > 0, and (2) whenever Tv...,Tr are commuting jut-preserving trans-
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formations on a measure space (X, &,ti) and A e ^ with \x(A) > 0, then 
-. N-l 

liminf — £ j^rfu n T2~
nA n • • • n r ;^ ) > o. 

The proof of (1) is fairly easy. For the van der Waerden-Artin-Schreier 
Theorem, measure theory is not involved, and the result follows from the above 
connection and an easily accessible topological multiple recurrence theorem. 
The proof of (2) is hard and takes up Chapters 4-7 of the present nine-chapter 
book. This theorem (2) is an amazing extension of the famous Poincaré 
Recurrence Theorem, according to which, if T: X -> X is a measure-preserving 
transformation on a measure space (X, &, JU,) with IJL(X) < oo, and if A e 9è 
with \i(À) > 0, then there is an n > 1 for which \i(T~nA n A) > 0. This 
Multiple Recurrence Theorem is not too hard to prove for a weakly mixing 
system, where it follows from average independence of the sets T~nA, or for an 
equicontinuous system, where it follows from uniform recurrence. In order to 
prove his Multiple Recurrence Theorem for all measure-preserving Zr actions, 
Furstenberg then needs to (1) develop relative ergodic theory: notions of 
ergodicity, weak mixing, almost periodic, mean ergodic theorem, etc., for a 
factor map or extension (measurable measure-preserving map (X,&,fi,T) -> 
(Y, # , v, S) which commutes with T and S)\ (2) show that the multiple 
recurrence property lifts under weakly mixing and compact extensions, indeed 
under controlled combinations of the two called primitive extensions, and that 
it is preserved by inverse limits; (3) prove a structure theorem asserting that 
every system is an inverse limit of primitive extensions, beginning with the 
one-point system. A key ingredient in (3) is the proof that given a nontrivial 
factor map X -> Z, one can interpolate X -> Y -> Z with Y-> Z primitive 
and nontrivial; then Zorn's Lemma helps to finish (3). All of this involves a 
virtuoso display of intertwined ergodic theory, topological dynamics, measure 
theory, and functional analysis. 

The structure theory with the techniques and detailed arguments used to 
develop them in Chapters 4-7 may be useful to ergodic theorists, but the 
casual reader will be happy to know that Furstenberg, along with Katznelson 
and Ornstein, has found a shorter path to the Multiple Recurrence Theorem 
(although the main ideas are still the same)—see [5]. For this reviewer, the 
main value of the present book is in the way it sets the topological and 
measure-theoretic multiple recurrence theorems, with their corollaries the van 
der Waerden-Artin-Schreier and Szemerédi Theorems, into the larger context 
of topological dynamics-ergodic theory and combinatorial number theory-
diophantine approximation, and the way in which it expounds the author's 
fruitful viewpoint from which the connections among these subjects are clear. 
Thus I would read [5] for the detailed argument, but this book for examples, 
motivations, related questions and overall understanding. 

The Poincaré Recurrence Theorem is very easy to prove; and it is not too 
hard, though a bit tricky, to show that if \i(A) > 0 then W= {n > 1: 
jL t ( r _ ^Piy4)>0} i s syndetic, or relatively dense: there is a K such that every 
subinterval of N of length K contains an element of W. (See p. 74 for a neat 
proof if you get stuck.) But how could one possibly prove that if n(A) > 0 
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then there is always an n such that n(T~nA n A) > 0? The proof is much 
easier than several in this book (see p. 72), but the statement is indicative of the 
manifold novelties of the author's approach. Again, it is easy to prove 
(Dirichlet—pigeonhole principle) that given a e R and e > 0, there are in­
tegers m and n with |a - m/n\ < e/n. But how can you show that given 
e > 0 you can always find m and n with \a - m/n2\ < e/n2l This was 
originally proved by Hardy and Littlewood; p. 22 gives a proof based on 
skew-product dynamical systems, and p. 48 by a multidimensional version of 
the van der Waerden-Artin-Schreier Theorem. There is much more in this 
book, including variations of the results mentioned already involving IP sets, 
sets of recurrence times, difference sets, and sets containing arbitrarily long 
intervals. Some great names, like Hubert, Schur, and Radó, have been associ­
ated with these problems in the past. There are insights on every page, helpful 
and illuminating examples—both easy and significant—abound, and provoca­
tive ideas leap out at the reader, inducing experimentation and fueling specula­
tion. The author's extremely productive viewpoint leads to a multidimensional 
array of new types of questions in dynamical systems and number theory; the 
theory of mild mixing begun in the last chapter and the higher-dimensional 
Szemerédi Theorem (a combinatorial number theory result found by these 
dynamical techniques) are examples for the ambitious reader to emulate. 

With all this inspiration, perhaps a list of precisely formulated open ques­
tions would have been superfluous or too quickly obsolete, but I still think it 
would have been useful. I could also quibble about the references, which are 
not always given, and, when present, are not always to the primary source. But 
no one should come to this book for his or her first contact with dynamical 
systems or combinatorial number theory; so, given the magnitude of the 
achievement in first discovering these results and then presenting them in such 
a clear and complete manner, the quibbles are negligible. 
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