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INTERSECTIONS OF HIGHER-WEIGHT CYCLES 
OVER QUATERNIONIC MODULAR SURFACES 

AND MODULAR FORMS OF NEBENTYPUS 

BY B. BRENT GORDON1 

In 1976 Hirzebruch and Zagier [6] computed the pairwise intersection mul­
tiplicities for a family of algebraic cycles (T£)n(EN in the Hubert modular 
surface associated to Q(y/p), where p is a prime congruent to 1 mod 4, 
and showed that the generating function for those intersection multiplicities 
Yln°=oC^m 'T£)e[nr] was an elliptic modular form of weight 2 and Nebentypus 
for To(p). Shortly afterwards Zagier [22] observed that if certain weighting 
factors were attached to the intersection numbers, then the new generating 
function was again an elliptic modular form of the same level and Nebentypus 
but now of higher weight. Thus he was led to ask if these weighted intersection 
numbers could also be realized as the ordinary geometric intersection multi­
plicities of some algebraic cycles in some appropriate homology theory for the 
Hubert modular surface. The purpose of this announcement is to describe an 
answer to Zagier's question for quaternionic modular surfaces. By combining 
some ideas of Millson [14] about higher-weight cycles in torus bundles over 
locally symmetric spaces with the notion of an algebraically defined subspace 
in the cohomology of a Kuga fiber variety (cf. [4]), we are able to associate 
to each Hirzebruch-Zagier cycle Tn in a quaternionic modular surface X an 
algebraic cycle Tn in a family of abelian varieties A over X such that: (a) 
The pairwise intersection multiplicities (Tm • Tn) of these cycles have precisely 
the same form as Zagier's weighted intersection numbers (Theorem 1), and 
(b) the generating function for intersection numbers Yl^Loi^n • 7^)e[nr] is 
an elliptic modular form of higher weight and Nebentypus for an appropriate 
T0(N) C SL2(Z) (Theorem 2). 

Tong [20] also looked at Zagier's question. In 1979 his response was to 
associate to each Hirzebruch-Zagier cycle a current in the cohomology of the 
Hilbert modular surface with coefficients in a complex vector bundle and 
show, using the theory of [19], that the intersection multiplicities of these 
currents coincided with Zagier's weighted intersection numbers. Now it is no 
coincidence that the cohomology classes represented by the cycles Tn live in a 
subspace H*(M) of H9(A, Q) which is isomorphic to the vector-bundle-valued 
cohomology that Tong worked with (cf. Lemma 1 below), and that under such 
an isomorphism the cycles Tn correspond to his currents. The point is that the 
whole picture can be realized algebraically inside of the variety A (Proposition 
1), so that one could start a priori with the "motive" Hm(M). Moreover, the 

Received by the editors August 25, 1985. 
1980 Mathematics Subject Classification (1985 Revision). Primary 10D21, 10D12. 
1 Research partially supported by the SFB "Theoretische Mathematik" and the Max-

Planck-Institut fur Mathematik, Bonn, and the University of Maryland. 
©1986 American Mathematical Society 

0273-0979/86 $1.00 + $.25 per page 
293 



294 B. B. GORDON 

Eichler-Shimura isomorphism identifies this Hm (M) with a space of cusp forms 
of higher weight for an arithmetic subgroup of SL2 (R) x SL2 (R) (cf. [13 and 
11], Chapter II). Thus the present work could also be viewed as an algebraic-
geometric formulation of the kind of lifting of automorphic forms which arises 
from restricting the Weil representation to the groups of a dual reductive pair; 
see [15 and 9], for example. 

I would like to thank Zagier for suggesting this problem to me as well 
as for his continuing interest and encouragement. I also profited from some 
conversations with Kudla. 

1. Let V be a 4-dimensional vector space over Q equipped with an aniso­
tropic quadratic form q of signature (2,2), and let L be a lattice in V on which 
q is integer-valued. Assume that the discriminant D of L is not a square. 
Then the even Clifford algebra C+(V) is a totally indefinite division quater­
nion algebra over the real quadratic field Q(yfD); its reduced discriminant is 
generated by the product of those rational primes at which q is anisotropic; 
and it contains the even Clifford algebra C+(L) as an order. Moreover, for 
4-dimensional V the spin group G := Spin(F) is the group of norm 1 units 
in C+{V). Thus G is simple over Q while GR ~ SL2(R) x SL2(R). Let 
îp : G —> SO(V) denote the natural representation of G on V, and let À denote 
the left regular representation of G on C+{V). Next choose an integer k > 0 
and let M be a free Z-module of rank k. We include the case k = 0 for 
completeness and take M = {0} when k = 0. Then A := G+(L) ®z M is a 
lattice in W := C+(V) <S>z M, and the representation a := X (g> 1 of G on W 
is equivalent over Q to k copies of the spin representation of G. 

Now let T be any torsion-free normal subgroup of finite index in C+(L)nG. 
(Such groups exist by [1].) Then ^ ( r ) preserves L and d(T) preserves A. 
Denote the symmetric domain associated to G by Î), i.e. S ~ Cn/K for 
a maximal compact subgroup K of G R . Then it is well known (cf. [7]) that 
X := r \3 ) can be embedded as a complex projective algebraic surface. What's 
more, it follows from the work of Kuga [11] and Satake [17, 18] that the torus 
bundle A := T \ (S x ( W R / A ) ) over X can also be embedded as a complex 
projective algebraic variety with the structure of a family of polarized abelian 
varieties parameterized by X. 

LEMMA 1. Let (p, E) be the absolutely irreducible representation of G 
defined over Q of highest weight (2fc, 2k). Then there exists a unique subspace 
#4fc+2(M) c #4*+2^) such that H4k+2(M) ~ H2{T,E). 

Here we take cohomology with coefficients in Q unless otherwise indicated. 
With the observation that p occurs with multiplicity one in /\ a (cf. [11, 
Lemma IV-2-1]), this lemma follows, for example, from [12, (1.3.3)]. Then 
the following proposition identifies i/4fc+2(M), defined by the lemma, as being 
an algebraically defined subspace of H4k+2(A), that is, essentially the Betti 
realization of a motive (cf. [2, §0]). 

PROPOSITION 1. There exists an algebraic cycle P C A x A of (complex) 
dimension 4k + 2 such that the projection from H4kJr2(A) to H4k+2(M) can 
be obtained by lifting a class from H4k+2(A) to H4k+2(A x A) via the first 
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projection from Ax A to A, then taking the cup product with the class that P 
represents, [P] G Hsk+4(AxA), and then taking the image in H4k+2(A) under 
the Gysin homomorphism associated to the second projection from A x A to 
A. In particular, algebraic classes in H4k+2(A) project to algebraic classes in 
H4k+2(M), and a class in H4k+2(M) is algebraic if and only if it is algebraic 
as a class in H4k+2(A). 

This proposition is a special case of [4, Theorem 1]. 

2. Let ( , ) denote the symmetric bilinear form on V defined by (u, v) := 
q(u + v) — q(u) - q(v). For nonzero v G L, let Vv denote the orthogonal 
complement of Qv in V, and let Lv := L D Vv. The following lemma is 
actually true for any quadratic lattice over a principal ideal domain so long 
as v is not isotropic. 

LEMMA 2. Let UL{V) := g.c.d.{(v, w)\w G L}. Then the discriminant Dv 

of Lv is related to the discriminant D of L by Dv = nL{v)~2(v,v)D. 

Now let L + := {v G L\q(v) > 0}. Then for v € L + we can construct 
an algebraic family of abelian varieties Av associated to Vv and Lv just as 
before: The even Clifford algebra C+(VV) is an indefinite division quaternion 
algebra over Q contained in C+(V); it contains C+(LV) as an order; Gv can 
be defined as G D G+(VV), or as Spin(Fv), or as the stabilizer of Qv in G; 
let Wv := C+(VV) <8>z M and Av := C+{LV) ® z M; let Tv := T n Gv\ and 
let 53v be the hermitian symmetric domain associated to Gv. Then as before 
Av := Tv \ (33v x (WVR/AV)) can be embedded as a complex projective variety 
with the structure of a family of polarized abelian varieties parameterized by 
Xv := Tv \ 55v. Moreover, the natural inclusions of Dv and S v x Wvn in Î) 
and 53 x VTR, respectively, induce holomorphic immersions iv := Xv —> X and 
hv := Av —• A compatible with the fiber structure of Av and A. 

DEFINITION, (a) For v G L+, let 

Tv:=nL(v)2kP2*(P'(hv(Av)xA)), 

where P is an algebraic cycle in Ax A with the properties described in Propo­
sition 1, and (•) denotes the intersection product (in the sense of rational 
homology) in A x A, and p2* is the map on cycles induced by the second 
projection from A x A to A, and UL{V) is defined as in Lemma 2. Then Tv 

is an algebraic cycle of higher weight which represents a well-defined class in 
H4k+2(A). In fact, [Tv] = P(nL(v)2k[hv(Av)]), where P denotes the projec­
tion from H4k+2{A) to H4k+2{M). 

(b) For m G Z+, let 

ver\L(m) 

where L(m) := {v G £|g(f) = m}. We call 7̂ n an arithmetic cycle of higher 
weight, as its definition depends on the arithmetic of L. 

(c) Let 7b be defined formally by 

[To]:={f c\ xik = 0, 
if k > 0, 
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where ci is the first Chern class on X. 
The arithmetic cycles of higher weight are the analogs of the Hirzebruch-

Zagier cycles in the present case. Of course if k = 0 then Tm is not of higher 
weight at all, rather it coincides with the Hirzebruch-Zagier cycle Tm in X. 
On the other hand, when k > 0 then Tm lives over Tm in the sense that 

Tm = 0* 2^ K{Av) I = 22 iv(xv), 
\ver\L(m) J ver\L(m) 

where 4>* is the map on cycles associated to the natural projection </>: A —• X. 

3. Let (Tm - Tn) denote the intersection multiplicity of Tm with Tn in the 
sense of rational homology. 

THEOREM l . 

{Tm'Tn)= ] T P2k(v,w)+ ] T E(Xv)P2k(v,w) 
(v,w)er\(L(m)xL(n)) (v,w)eT\(L(m)xL(n)) 

D(v,w)<0 D(v,w)=0 

where D(v,w) := (v,w)2 — ±q{v)q(w), 
h 

p2k{v,w) := ^{-iyi2kr')q{vyq{wy\v,w)2k-2' 
3=0 

and E(XV) is the Euler volume of Xv. 

Some remarks concerning this theorem might be in order. First of all, 
notice that D(v,w) is the discriminant of q restricted to Zv + Zw. So when 
v or w is in L+, then D(v, w) < 0 if and only if this binary quadratic form is 
positive definite. On the other hand, for nonzero v and w then D{v,w) = 0 
if and only if Qv = Qw, in which case hv(Av) = hw(Aw) and Tv is a multiple 
of Tw. Thus the second term in the expression for (Tm * Tn) comes from the 
self-intersection multiplicities of the common components of Tm and Tn—this 
is why the Euler number appears. In any case the second term vanishes unless 
mn is a square. 

Secondly, note that the polynomial P2k{v,w) is homogeneous of degree 2k 
in v and w separately. In fact P2k(v,w) = q{v)kq(w)kC2fc({

v\w'))^ where 
C^k is the Gegenbauer, or ultraspherical, polynomial (cf. [21, Chapter IX], 
or your favorite text on orthogonal polynomials) and u' := (it,u)~l/2u G Vu 
is the unit vector in the u-direction for any u € L+. 

As for the proof of Theorem 1, if k = 0 then the methods of [8] suffice. 
On the other hand, when k > 0 we can write down the harmonic differential 
form rjm on A whic represents [Tm], and then integrate rjm over Tn. Unfor­
tunately this is a somewhat lengthy business, as it must begin with choosing 
coordinates on A. Eventually, however, the computations on which the proof 
depends are just like Zagier's [22, Theorem 6 and 23, Theorem 2]. 

4. THEOREM 2. The Fourier series 
oo 

Fm{r) := ^2{Tm • Tn)e[riT) 
n=0 
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is an elliptic modular form of weight 2fc + 2 on TQ(N) with character x, where 
N and\ are the level and character, respectively, of L (in the sense of [5, §4]). 
If k > 0 then Fm(r) is a cusp form. 

The proof of Theorem 2 from Theorem 1 is quite amusing. The starting 
point is the following proposition, which can be proved by combinatorial ar­
guments in the spirit of [8] or can be deduced from [10]. Let Z := (T

z *,) 
denote an element of the Siegel upper half-plane of genus 2. 

PROPOSITION 2. The Fourier series 

*(Z) := 2~1E{X) + J2 cfa(v)r + (v' w)z + <7(™y] 
(v,w)er\(L+xL+) 

D(v,w)<0 

+ J2 E(Xv)e[q(v)r + (v, «;)* + q(wy] 
(v,w)er\(L+xL+) 

D(v,w)=0 

is a Siegel modular form of genus 2, weight 2 and character \ for IQ '(N) C 
SP4(Z). 

In fact $(Z) is the theta function for T-inequivalent representations of 
positive semidefinite binary quadratic forms in L. 

So if we expand $(Z) in a Fourier series as a function of r', then it follows 
immediately from the proposition that each Fourier coefficient </>m(r, z), for 
m G N, is a Jacobi form of weight 2 and index m, in the terminology of [3], 
for r0(iV) C SL2(Z) with character \ (cf. [3, Theorem 6.1, or 16]). And now 
suddenly Theorem 2 follows as a special case of [3, Theorem 3.1]! For it is 
readily checked that Fm(r) is the 2A:th "development coefficient" of 0m(r, z), 
meaning that it is derived from the 2fcth Taylor coefficient of <£m(r, z) at z = 0 
in such a way that it becomes an elliptic modular form of weight 2k + 2 also 
for ro(iV) with character %• 

REMARK. It should be noted that more notations but no new ideas are 
needed to generalize the methods and results described in this note to the 
case where V is a 4-dimensional vector space over a totally real number field 
F and q is an anisotropic quadratic form on V which has signature (2,2) at 
some of the real places of F and (4,0) at the rest. 
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