RESEARCH ANNOUNCEMENTS

SOLUTION OF A PROBLEM RAISED BY RUBEL

BY Y. KATZNELSON ${ }^{1}$

The following problem was raised by L. Rubel in the 1950s and appears in [2]; my interest in it was rekindled by a query that B. Ghusayni submitted to the Notices of the American Mathematical Society.

Problem. Suppose $E \neq\{0\}$ is a linear subspace of $L^{2}(\mathbf{R})$ such that
(i) $f \in E \Rightarrow f^{\wedge} \in E$ (where f^{\wedge} is the Fourier transform of f)
(ii) $g \in L^{2}(\mathbf{R}),|g| \leq|f|$ a.e. for some $f \in E$ implies that $g \in E$.

Then must $E=L^{2}(\mathbf{R})$?
We propose to prove more, namely:
THEOREM 1. Let $g, f \in L^{2}(\mathbf{R}), f \neq 0$. Then there exist functions $\varphi_{j} \in$ $L^{\infty}(\mathbf{R}), j=1, \ldots, 5$ such that, denoting by M_{j} the operator of multiplication by φ_{j} and by F the Fourier transformation, we have

$$
g=M_{5} F M_{4} F M_{3} F M_{2} F M_{1} \cdot f
$$

Notations.

$$
\begin{aligned}
l^{2^{*}} & =\left\{h ; h \in L^{2}(\mathbf{R}), h \text { constant in each }[n, n+1)\right\}, \\
L^{2^{*}} & =\left\{H ;|H(x)| \leq h(x) \text { for some } h \in l^{2^{*}}\right\}, \\
& =\left\{H ; H=\varphi h, h \in l^{2^{*}}, \varphi \in L^{\infty}(\mathbf{R})\right\}, \\
& =\left\{H ; \Sigma \sup _{n \leq x<n+1}|H(x)|^{2}=||H| \||^{2}<\infty\right\}
\end{aligned}
$$

Lemma 1. If $\psi \in L^{2}(\mathbf{R})$ and $\operatorname{support}(\psi) \subset[0,1]$, then $\hat{\psi}=F \psi \in L^{2^{*}}$ and $\|\|\hat{\psi}\| \leq 2\| \psi \|$.

Lemma 2. If $\Psi \in L^{2}(\mathbf{R})$, then there exists a continuous $\Phi,|\Phi(x)|=1$, such that $(\Phi \Psi)^{\wedge} \in L^{2^{*}}$ and $\left\|\left\|\Phi \Psi^{\wedge}\right\|\right\| \leq 2\|\Psi\|$.

Proof. Write $\Psi=\Sigma \psi_{j}$ with $\psi_{j}=\Psi$ on I_{j}, where $\left\{I_{j}\right\}$ are intervals of length 1 whose disjoint union covers \mathbf{R}. Write $\Phi(x)=\exp \left\{i \lambda_{j} x\right\}$ on I_{j},

[^0]$\lambda_{j} \in 2 \pi \mathbf{Z}$, and the λ_{j} 's increase fast enough to make $\hat{\psi}_{j}\left(\xi-\lambda_{j}\right)$ virtually orthogonal. Use Lemma 1 and the equality $\|\Psi\|^{2}=\Sigma\left\|\psi_{j}\right\|^{2}$.

Proof of the theorem. Given $f \neq 0$, we take φ_{1} bounded and of (well-placed) small support so that $\varphi_{1} f$ is an approximate point mass and its Fourier transform is bounded away from zero on $[0,1]$. Thus, the indicator function of $[0,1]$, denoted $1_{[0,1]}$, has the form $M_{2} F M_{1} f$. We now apply F, multiply the outcome by a 2π-periodic function φ_{3} and apply F again. What we obtain is the function

$$
F(x)=\hat{\varphi}_{3}(n) \text { for } n \leq x<n+1,
$$

which belongs to $l^{2^{*}}$. Our limitation is that φ_{3} must be bounded, but we invoke the result of $[\mathbf{1}]$ which says that given any sequence $\left\{a_{n}\right\} \in l^{2}$ there exists continuous 2π-periodic φ_{3} such that $\left|a_{n}\right| \leq\left|\hat{\varphi}_{3}(n)\right|$. It follows that the functions $F M_{3} F M_{2} F M_{1} f$ majorize every function in $l^{2^{*}}$ and hence in $L^{2^{*}}$ and the functions $M_{4} F M_{3} F M_{2} F M_{1} f$ cover $L^{2^{*}}$. Lemma 2 shows how an additional F and division by Φ (multiplication by $\bar{\Phi}$) covers all of $L^{2}(\mathbf{R})$.

REMARK. The method of [$\mathbf{1}$] applies, as is, to show that if G is a compact abelian group and $f \in L^{2}(G)$, there exists a bounded φ on G such that $|\hat{\varphi}| \geq|\hat{f}|$ on \hat{G}. This permits an extension of Theorem 1 to all locally compact abelian groups (notice that the Fourier operator F appears four times so that we end on the group we have started with).

References

1. K. de Leeuw, J.-P. Kahane and Y. Katznelson, Sur les coefficients de Fourier des fonctions continues, C. R. Acad. Sci. Paris Sér. A-B, t. 285 (1977), 1001-1003.
2. L. A. Rubel, A collection of research problems in mathematical analysis, Université de Sherbrooke, Sherbrooke, Québec, Canada, 1974.

Department of Mathematics, Hebrew University, Jerusalem, Israel
Department of Mathematics, Stanford University, Stanford, CaliFORNIA 94305

[^0]: Received by the editors September 20, 1985.
 1980 Mathematics Subject Classification (1985 Revision). Primary 42A38.
 ${ }^{1}$ Research supported by NSF grant DMS81-07092.

