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ON PLATEAU'S PROBLEM FOR MINIMAL SURFACES 
OF HIGHER GENUS IN R3 

BY FRIEDRICH TOMI AND ANTHONY TROMBA 

The classical solution of the Plateau problem by Radó [10] and Douglas 
[3] shows that any rectifiable Jordan curve in R3 is spanned by a minimal 
surface of disc type. Under what conditions a minimal surface of a given 
higher genus exists, spanning a given Jordan curve in a Riemannian manifold 
N, seems to be a much more difficult problem. For compact minimal surfaces 
without boundary and in case N has sufficient topological complexity, the 
"incompressibility" method of Schoen and Yau gives a sufficient condition for 
existence. 

In [4] Douglas did develop a method to treat the problem of when a given 
contour is spanned by a surface of genus p. Douglas' condition, however, 
seems quite difficult to verify in concrete cases. In this paper we will give 
simple geometric and topological sufficient conditions. 

THEOREM. Let N be a solid torus of class C3 and genus g in R3 whose 
boundary has nonnegative inward mean curvature, and let 7 6 Ili(iV) denote 
the homotopy class of a rectifiable Jordan curve T in N. 

(a) If g = 2p and 7 = aia2aj~1a^"1 • • • a2p-ia2pa2p1_iU2p1 where 0 1 , . . . ,a2p 
is a basis for Ili(iV) thenT bounds an immersed oriented minimal surface of 
genus p. 

(b) If g = 1 and 7 = 2a for some a j=- 0 in Hi(N) then T bounds an 
immersed minimal surface of Mobius type. 

We sketch the proof of part (a). 
Let r be a rectifiable contour in a solid 2p torus iV C R3, M a surface 

of genus p with dM = S1 the unit circle. Further let Mr = {u: M —• 
N\u: M - • r monotonically, u G f f^A^R 3 ) n C(M,R3)}. Denote by M 
the C°° Riemannian metrics g on the Schottky double M of M such that the 
natural involution T: M <-̂  is an isometry for g. Dirichlet's functional 

E: M x Mr->R 

is defined by 

Let P be the space of all C°° positive functions on M which are sym
metric and Do those C°° diffeomorphisms which fix dM C M (as a set) 
and are homotopic to the identity. The Teichmüller space for M is then de
fined to be T = (M/P)/Doi a finite-dimensional C°° manifold of dimension 
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-3x(Af), x(M) the Euler characteristic of M. The conformai invariance of 
Dirichlet's functional guarantees that E is well defined as a map 

E: T x i / r ^ R . 

Let D/Do = T be the modular group of M. Then the Riemann space Z 
of moduli is defined as JZ = T/T. 

For u € Mr consider the introduced map u«: 7Ti(M) —• 7ri(JV). NOW 
7TI(M) = 7Ti(JV) = (free group on 2p generators). It is clear that [dM] equals 
the commutator of the basis of ir\(M) obtained from the standard polygonal 
model of M. By hypothesis it* then takes the commutator to the commutator. 
By Zieschang's [11] generalization of a classical result of Dehn (unpublished) 
and Nielsen [9], u* must be an isomorphism. 

Let ([gn],Wn) G T x Mr denote a minimizing sequence. Then since (un)* is 
an isomorphism, un satisfies the Douglas-Courant nondegeneracy condition. 
Using the Mumford compactness result for the moduli space and a clever idea 
of Schoen and Yau [11] one can show that the class of gn in R, has a con
vergent subsequence. This means that there exists a sequence fn G D such 
that the pull back fn(gn) converges in M. The Courant-Lebesgue Lemma and 
nondegeneracy show that un has a convergent subsequence. Lower semiconti-
nuity of E then guarantees the existence of a minimum ([</], u) G T x Mr for 
Dirichlet's functional. One must now show that ([£],£) represents a minimal 
surface. This is not straightforward since we are minimizing Dirichlet's func
tional subject to an obstacle restraint. Nevertheless this can be done using 
a regularity result for variational inequalities of the first author [12] and a 

o o 

suitable version of a maximal principle which shows that û maps M into N. 
The results of Gulliver, Osserman, Roy den [5, 6] now imply that the resulting 
minimal surface is immersed. 
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