UNITS AND CLASS-GROUPS IN THE ARITHMETIC THEORY OF FUNCTION FIELDS

BY DAVID GOSS

ABSTRACT. In the arithmetic theory of function fields, there are two distinct analogs of classical Bernoulli numbers. It has been known for a while that one analog was intimately connected with class number formulae. Due to recent progress, one can now begin to understand the arithmetic meaning of the other.

Let $k = \mathbf{F}_r(T)$, $r = p^m$, and let $A = \mathbf{F}_r[T]$. Let $P \in \operatorname{Spec}(A)$ be associated to a prime of degree d. As in [2] (the notation of [2] will be followed throughout), one can associate to P the abelian extension k(P) of k with Galois group isomorphic to A/P^* . This extension is very closely analogous to $Q(\varsigma_p)/Q$; ς_p a primitive pth root of unity. We will be interested here in the "totally real" subfield $k(P)_+$ of k(P) obtained as the fixed field of $\mathbf{F}_r^* \subseteq A/P^*$. In particular, our results are concerned with the p-primary class group $\operatorname{Cl}(P)_+^{(p)}$ of $k(P)_+$ and with the class group $\operatorname{Cl}(P)_+^{(p)}$ of the ring of A-integers $\mathcal{O}(P)_+$ of $k(P)_+$. One knows that the natural projection of $\operatorname{Cl}(P)_+^{(p)}$ to $\operatorname{Cl}(P)_+^{(p)}$ is surjective (see [2, 6.1.2]).

Associated to A one has the elements $\beta(i)$, $i \in \mathbb{N}^+$, and B_i , $i \in (r-1)\mathbb{N}^+$. These elements of k are similar to classical Bernoulli numbers in that they are special values of certain zeta-functions ([2]; the $\beta(i)$ occur at negative integers, the B_i occur at positive integers $\equiv 0$ (r-1)) and together possess the known properties of Bernoulli numbers; e.g., the $\beta(i)$ satisfy \mathcal{P} -adic congruences, etc. Let $i \in (r-1)\mathbb{N}^+$ with $i < r^d - 1$ and let $\omega_{\mathcal{P}}$ be the Teichmüller character of A/\mathcal{P}^* . Note that by Carlitz's von Staudt result [2, 5.2.4] B_i is \mathcal{P} -integral in this range.

In [3] the following result is established.

THEOREM 1.
$$Cl(\mathcal{P})_{+}^{(p)}(\omega_{\mathcal{P}}^{i}) \neq \{0\}$$
 if and only if $\mathcal{P}|\beta(r^{d}-1-i)$.

Now let $\mathcal{E}(P) \subseteq \mathcal{O}(P)_+^*$ be the group of cyclotomic units. From the result of Galovich-Rosen [2, 7.2.1] one knows that $\mathcal{O}(P)_+^*/\mathcal{E}(P)$ is a finite group of order equal to the class number of $\mathcal{O}(P)_+$. In fact, in [3] the following p-adic refinement of this result is established.

THEOREM 2. The p-groups $(\mathcal{O}(\mathcal{P})_+^*/\mathcal{E}(\mathcal{P}))^{(p)}(\omega_{\mathcal{P}}^i)$ and $\widetilde{\mathrm{Cl}(\mathcal{P})_+^{(p)}}(\omega_{\mathcal{P}}^i)$ have the same order.

In [4], S. Okada has introduced a version of the classical Kummer homomorphism for $\mathcal{O}(\mathcal{P})_+^*$ and has established the following.

Received by the editors October 25, 1984 and, in revised form, April 30, 1985. 1980 Mathematics Subject Classification. Primary 12A90.

132 DAVID GOSS

THEOREM 3. $(\mathcal{O}(\mathcal{P})_+^*/\mathcal{E}(\mathcal{P}))^{(p)}(\omega_{\mathcal{P}}^i) \neq \{0\}$ implies that $\mathcal{P}|B_i$.

Thus, from Theorem 2 we obtain the following result.

THEOREM 4.
$$\widetilde{\mathrm{Cl}(\mathcal{P})}_{+}^{(p)}(\omega_{\mathcal{P}}^{i}) \neq \{0\} \text{ implies } \mathcal{P}|B_{i}.$$

It is most interesting that the converse to Theorem 4 is *false*. Indeed, if it were true, Theorem 1 would then imply that \mathcal{P} must divide $\beta(r^d - 1 - i)$. But for r = 3, we find $(T^3 - T + 1)|B_{10}$ but does *not* divide $\beta(16)$.

It can also happen that $\mathcal{P}|\beta(r^d-1-i)$ but does not divide B_i (e.g., r=3, $(T^3-T+1)|\beta(8)$ but does not divide B_{18}). In this case, we find by Theorem 1 that the *i*th component of $\mathrm{Cl}(\mathcal{P})_+^{(p)}$ is nonzero and by [2, 6.1.2] is concentrated on the infinite primes. Thus, it can be *canonically* and exactly described by Stickelberger elements. This result forms a version of the *Spiegelungsatz* for function fields.

The remaining case $(P|B_i \text{ and } P|\beta(r^d-1-i))$ has yet to be fully explored. However, there *are* examples where $\widehat{\operatorname{Cl}(P)}_+^{(p)}(\omega_P^i) \neq \{0\}$.

Finally, the \mathcal{P} -divisibility properties of the $\beta(i)$ and B_i are given by the following result. It is intriguing that $\beta(i)$ appears to be more divisible than B_i .

PROPOSITION 5. (a) Let $i \in (r-1)\mathbf{N}^+$ with $i < (r^d-1)/p$. Then, $P|B_i$ if and only if $P|B_{pi}$.

- (b) Let $i \in \mathbb{N}^+$. Then $P|\beta(i)$ if and only if $P|\beta(pi)$.
- (c) Let $i_1, i_2 \in \mathbb{N}^+$ with $i_1 \equiv i_2 \ (r^d 1)$. Then $P|\beta(i_1)$ if and only if $P|\beta(i_2)$.
 - (d) Let $i \in \mathbb{N}^+$ be of the form $p^j(r^h-1)$. If $i < r^d-1$ then $P \nmid B_i$.
- (a) and (b) follow from the fact that $\zeta(pi) = \zeta(i)^p$ and the properties of the Γ_i . Part (c) follows from the congruences satisfied by the $\beta(i)$. Part (d) follows from an explicit calculation of B_i for such i by Carlitz. One should note that the numbers i of the form $r^h 1$ are precisely those that are congruent to $0 \ (r-1)$ and for which one has numerical evidence linking Γ_i and $\beta(i)$ [2].

REFERENCES

- L. Carlitz, An analogue of the von Staudt-Clausen theorem, Duke Math. J. 3 (1937), 503–517.
- 2. D. Goss, The arithmetic of function fields 2: The 'cyclotomic' theory, J. Algebra 81 (1983), 107-149.
- 3. D. Goss and W. Sinnott, Class-groups of function fields, Duke Math. J. 52 (1985), 507–516.
 - 4. S. Okada, Kummer's theory for function fields (to appear).

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, COLUMBUS, OHIO 43210-1174