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ABSTRACT. In the arithmetic theory of function fields, there are two 
distinct analogs of classical Bernoulli numbers. It has been known for 
a while that one analog was intimately connected with class number 
formulae. Due to recent progress, one can now begin to understand the 
arithmetic meaning of the other. 

Let k = Fr(T), r = p m , and let A = Fr[T]. Let P e Spec(A) be associated 
to a prime of degree d. As in [2] (the notation of [2] will be followed through­
out), one can associate to P the abelian extension k(P) of k with Galois group 
isomorphic to A/P*. This extension is very closely analogous to Q{çp)/Q', Çp 

a primitive pth root of unity. We will be interested here in the "totally real" 
subfield k(P)+ of k(P) obtained as the fixed field of F* Ç A/P*. In particular, 
our results are concerned with the p-primary class group 
and with the class group Cl(P)+ of the ring of ^-integers 0(P)+ of k(P)+. 

One knows that the natural projection of C1(P)+ to C1(P)+ is surjective 
(see [2, 6.1.2]). 

Associated to A one has the elements /3(i), i G N+, and Bi, i £ (r- 1)N+. 
These elements of k are similar to classical Bernoulli numbers in that they are 
special values of certain zeta-functions ([2]; the /3(i) occur at negative integers, 
the B{ occur at positive integers = 0 (r - 1)) and together possess the known 
properties of Bernoulli numbers; e.g., the (3(i) satisfy ^-adic congruences, etc. 
Let i G (r - 1)N+ with i < rd - 1 and let up be the Teichmiiller character of 
A/P*. Note that by Carlitz's von Staudt result [2, 5.2.4] Bi is ^-integral in 
this range. 

In [3] the following result is established. 

THEOREM 1. C\{P){*\uj>) £ {0} if and only if P\j3(rd -1-i). 

Now let £{P) Ç 0(P)*+ be the group of cyclotomic units. Prom the result 
of Galovich-Rosen [2, 7,2.1] one knows that 0{P)\/£(P) is a finite group of 
order equal to the class number of 0(P)+. In fact, in [3] the following p-adic 
refinement of this result is established. 

THEOREM 2. Thep-groups {0{P)\/£(P)){p)(u)>) andCl(P)^]'(o;>) have 
the same order. 

In [4], S. Okada has introduced a version of the classical Kummer homo-
morphism for 0(P)\ and has established the following. 
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THEOREM 3. {0(P)\IE(^))(p)(^>) ï {0} implies that P\Bi. 

Thus, from Theorem 2 we obtain the following result. 

THEOREM 4. C l^^wj , ) ^ {0} tmpfaca />|B<. 
It is most interesting that the converse to Theorem 4 is false. Indeed, if 

it were true, Theorem 1 would then imply that P must divide j3(rd — 1 — i). 
But for r = 3, we find (T3 -T + 1)\B10 but does not divide /?(16). 

It can also happen that P\/3(rd - 1 - i) but does not divide Bi (e.g., 
r = 3, (T3 -T + 1)1)3(8) but does not divide B1S). In this case, we find 
by Theorem 1 that the zth component of C\(P)+ is nonzero and by [2, 6.1.2] 
is concentrated on the infinite primes. Thus, it can be canonically and ex­
actly described by Stickelberger elements. This result forms a version of the 
Spiegelungsatz for function fields. 

The remaining case (P\Bi and P\/3(rd — 1 — i)) has yet to be fully explored. 
However, there are examples where Cl(P)+\wlp) ^ {0}. 

Finally, the P-divisibility properties of the (3(i) and Bi are given by the 
following result. It is intriguing that f3(i) appears to be more divisible than 
Bi. 

PROPOSITION 5. (a) Let ie{r- 1)N+ with i < (rd - l)/p. Then, P\Bi 
if and only if P\Bpi. 

(b) Let i e N + . Then P\/3(i) if and only if P\/3(pi). 
(c) Let z'i, i<i G N+ with i\ = 2*2 {rd — 1). Then P\(3(ii) if and only if 

W 2 ) . 
(d) Let i e N+ be of the form p>(rh - 1). Ifi<rd-1 then P\B{. 

(a) and (b) follow from the fact that ç(pi) = ç(i)p and the properties of the 
IV Part (c) follows from the congruences satisfied by the (3(i). Part (d) follows 
from an explicit calculation of Bi for such i by Carlitz. One should note that 
the numbers i of the form rh — 1 are precisely those that are congruent to 
0 (r — 1) and for which one has numerical evidence linking I \ and /3(i) [2]. 
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