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1. Introduction. It is, nowadays, a well-known fundamental fact in dif­
ferential topology that there are many differential manifolds which are home-
omorphic to but nondiffeomorphic to spheres. Such differentiable manifolds 
were christened exotic spheres by their founder, J. Milnor. The structures 
of those exotic spheres which can be realized as the boundaries of paralleliz-
able manifolds were systematically analyzed by the technique of surgery in 
[KM]. They can be imbedded as codimension-two submanifolds of the stan­
dard spheres. 

In differential geometry and geometric measure theory, the study of closed 
minimal submanifolds of the euclidean n-sphere 5 n ( l ) is directly related to 
that of the local structure of singularities of minimal submanifolds in the gen­
eral Riemannian setting. Therefore, closed minimal submanifolds of 5 n ( l ) 
are not only interesting, nice, geometric objects in themselves, but are also 
of basic, theoretical importance in the study of geometric variational the­
ory. Among various problems on the existence, as well as on the uniqueness, 
of closed minimal submanifolds of euclidean spheres, the following problems 
naturally distinguish themselves as especially interesting. 

Problem 1. The existence and uniqueness problem of minimal imbeddings 
(or immersions) of codimension-one spheres in Sn(l) (the spherical Bernstein 
problem proposed by S. S. Chern [2]). 

Problem 2. The existence and uniqueness problem of minimal imbeddings 
(or immersions) of codimension-two exotic or knotted spheres in 5 n ( l ) . 

We announce here the existence of codimension-two minimal immersions 
of exotic spheres into euclidean spheres. The following is a brief outline of 
a method of construction of such examples of minimal immersions of exotic 
spheres of Kervaire type, £ ^ + 1 , into S4fc+3(1). 

2. The Basic ideas of construction. In the study of the degree of 
symmetry of exotic spheres [4], one finds that the Kervaire sphere Eofc+1 G 
bP4k+2 is the most symmetric exotic sphere, namely, 

iV(Em) = max{dimG: G compact subgroup of Diff(Em)} 

< | ( m 2 + 7) 

for all exotic m-spheres E m , and, in the above, equality holds when and 
only when E m = Eofc+1 € bP±k+2- Compact, differentiate transformation 
groups on Egfc+1 with the above highest possible dimension, i.e., dim G = 
| (m2 + 7) = fc(2fc + 1) + 1, are classified in [3]. It is a rather pleasant surprise 
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that dim(Eofc+1/G) = 1, namely, the Kervaire sphere can be constructed as a 
generalized rotational manifoldl Slightly later, Brieskorn [1] discovered that 
the Kervaire sphere E4,*^1 can be imbedded into the unit sphere S4fc+3(1) as 
the solution of the following highly symmetric equation of complex variables: 

4 + *? + ••• + 4k+i = °> / = ±3 (mod8). 

Combining the above results of [3, 4], it is not difficult to see that those 
highest-dimensional compact transformation groups (G, Egfc+1) can, in fact, 
be equivariantly imbedded into the following orthogonal transformation groups 
on S,4fc+3(1), respectively: 

G = S1 x 0{2k + 1)/Z2, S4fc+3(1) c C1 0 C2/c+1 = R4/c+4, 

where the 0{2k + 1) part acts on C2fc+1 = R2/c+1 0 R2/c+1 diagonally via the 
standard 0(2k + l)-action on R2/c+1, and the S1 part acts on C1 0C 2 / c + 1 via 
componentwise complex multiplication of (e2l6/, eh 6 / , . . . , ehe). 

Based upon the above background knowledge of the symmetries of Kervaire 
spheres, it is natural to try the following idea of constructing equivariant 
examples of minimal immersions of (G, E4/0*1) into (G, 54fc+3(l)) with respect 
to the above specific transformation groups. The actual construction of such 
equivariant examples consists of the following steps: 

Step 1. One begins with the determination of the orbital geometry of the 
above specific equivariant geometric system (G, S4k+1(l)). For our purpose 
one needs the determination of the orbital distance metric on the orbit space 
S4fc+3(1)/G, which measures the distance between orbits, and the volume 
function v(£), which records the (4A:-dimensional) volume or the orbits £ G 
S4k+3(l)/G. This groundwork has already been done in a previous paper [5] 
by the first two authors. The results can be summarized as follows: 

(i) Topologically, the orbit space is a 3-dimensional disc D3 with a natural 
induced action of 0(2) = iV(G, 0(4/c-f 2))/G. The orbital geometric structure 
on D3 is clearly 0(2)-invariant. 

(ii) Choose a fixed subgroup 0(1) C 0(2). Let D2 = F(0(1),D3) = 
D\ U D2_. Then D\ (or D2_) forms a fundamental domain of (0(2), Z)3), and 
the restricted orbital geometry on D\ can be described as follows. 

It is convenient to parametrize D\ by {(x,y); 0 < x < 7r/2, 0 < y < ir/4}. 
Then the orbital distance metric and the volume function, restricted to D\, 
can simply be given by the following formula: 

ds2 = dx2 + cos2 x dy2, 
(1) 

v2(x,y) = c • {sin2 2x + I2 cos4 x sin2 2y} • {cos4 x cos2 2y}n~2. 

Step 2. Following the setting of [HL], it is convenient to modify the orbital 
distance metric ds2 on the orbit space D3 = S4fc+3(1)/G by setting ds2 = 
v2 • ds2. Then an invariant submanifold (G,M4fc+1) of cohomogeneity one 
in (G, S4/c+3)(l)) is minimal if and only if its generating curve M4 / c + 1 jG 
is a geodesic curve with respect to the above modified metric dfe2. Since 
D2 — F(0(1), D3) is the fixed point set of an isometric transformation group, 
it is clearly a totally geodesic submanifold of (-D3,cfë2). This remarkable, 



122 W U - T E H HSIANG, WU-YI HSIANG AND IVAN STERLING 

TT/4 

0 
-7T /2 0 7T/2 

FIGURE l 

simple fact enables us to reduce the original codimension-two problem to 
a much simpler codimension-one problem. Analytically, this amounts to a 
reduction from a system of two nonlinear second order ODEs to that of a 
single ODE, namely, 

cos x - (x'y" — y'x") — sin x • (2xf2 + y'2 • cos x) • y' 

+ cos x(x/2 + y'2 cos2 x)y' < — 2(n — 2) tan x 

sin Ax — 2/2 cos3 x sin x sin2 2y 
sin2 2x + I2 cos4 x sin2 2y 

- -^— (x'2 + y'2 cos2 x) { - 2(n - 2) tan 2y 
COS X I 

I2 cos4 x sin 4y 
sin2 2x + I2 cos4 x sin2 2y 

- 0 , 

where the "geodesic" curve *)(t) = (x(t),y(t)), \x\ < 7r/4, \y\ < 7r/4, is given 
in terms of an arbitrary parameter t and x^2/^£/^2//, are derivatives with 
respect to t. 

Step 3. Of course, the most crucial step of the construction is to establish 
the existence of a global solution curve of the above ODE (2) with correct 
geometric features which will generate an immersed Kervaire sphere under 
the action of G. In our case it is a solution curve which starts at a suitable 
boundary point (a, 7r/4), 0 < a < ir/2, and ends up at the origin. Figure 1 is 
the computer-generated graph of such a curve for the case / = 3, n = 2/c +1 = 
5. 

3. Statement of the result and an indication of its proof. 

THEOREM. For k < 100 there exists a minimal immersion of the Kervaire 
sphere Eofc+1 into S4fc+3(1) which is of cohomogeneity one. 

Sketch of Proof As described in §2, within the framework of equivariant 
Riemannian geometry, the proof may be reduced to the construction of a 
global solution curve of the ODE (2) with the correct geometric features. 
Let 7(x, y, 0) be the solution curve starting at (x, y) with initial angle 0 with 
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d/dx. The following facts highlight a stagewise evolution through solution 
curves leading to the desired one. 

FACT 1. There exist ai,a2,0 < ai,a2 < 7r/2, such that 7(ai,7r/4,-7r/2) 
(resp., 7(a2,7r/4, —7r/2)) "intersects" x = 0 with an angle a, 0 < a < 7r/2 
(resp., 7r/2 < a < 7r). Such curves are shown to exist by studying the Jacobi 
equation along the known geodesies x = 0 and y = 0. 

FACT 2. There exists a, 0 < a < TT/2, such that 7(0,7r/4, -TT/2) "inter­
sects" x = 0 orthogonally. See Figure 2. 

FACT 3. There exist bi,b2,BuB2, TT/2 < 61,62 < 0, 0 < BUB2 < 7r, 
such that 7(61,0,Bi)) "intersects" x = 0 with an angle a, 0 < a < 7r/2 
(resp., 7r/2 < a < TT). Furthermore, 7(62,0,^2) has dy/ds > 0 at its "first 
turning back point" The curve 7(62,0,-82) is shown to exist, with the aid of 
a computer, by using numerical approximations. 

FACT 4. There exist 6, B, -TT/2 < 6 < 0 , 0 < £ < T T , such that 7(6,0, B) 
"intersects" x = 0 orthogonally. See Figure 3. 

FACT 5. There exist di, £1, -n/2 < d\ < 0, 0 < 61 < n, such that (dx, 0,6\) 
goes through the origin. See Figure 4. 

FACT 6. There exist d2,82, -7r/2 < d2 < 0, 0 < 82 < 7r, such that 
7(^2,0,62) "intersects" y = IT/4. 
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The Theorem follows from Facts 2 and 6 and continuous dependence of 
solutions on initial conditions. 
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