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REDUCTIBILITY OF STANDARD REPRESENTATIONS 

BY DAN BARBASCH1 AND DAVID A. VOGAN, JR.2 

Let G be a real linear reductive group with abelian Cart an subgroups. 
Unexplained notation, in general, follows [3 and 6]. Fix a parabolic subgroup 
P = MAN of G and a representation 6 of M in the limits of the discrete 
series. The continuous family of representations 

7r(i/) = lnd$(6 <8> v (g> 1) {y e A = a*) 

is a typical series of standard representations of G. (These are not, in gen
eral, unitary since v may not be a unitary character of A.) In order to apply 
certain "continuity arguments" in the study of unitary representations of G, 
it is necessary to know for which values of v the representations n{y) is re
ducible. We sketch here an explicit answer to this question for classical groups. 
(Our techniques reduce the problem for exceptional groups to a (long) finite 
calculation.) The continuity arguments mentioned above require a similar un
derstanding of reducibility for some larger class (it is not yet clear what larger 
class) of induced representations. Some of our techniques also apply to this 
more general problem. 

Write W(v) for the direct sum of the Langlands subquotients of 7r(i/). These 
are the irreducible composition factors of TT(U) whose matrix coefficients ex
hibit the largest possible growth at infinity [1]. (Alternatively [4], they may 
be characterized by the fact that their restrictions to a maximal compact sub
group contain representations which are as small as possible.) Obviously TT(I>) 
is reducible if and only if at least one of the following conditions holds: 7f{v) 
is reducible; or TT(U) has some composition factor not in TT(U). We write the 
second possiblity as TT(U) ^ ?f(^)- Now Knapp and Zuckerman have deter
mined in [2] exactly when the first possibility occurs: v must belong to one of 
finitely many linear subspaces in a*, which are explicitly described in terms of 
the inducing representation 6. We must therefore explain when 7r(f/) ^ TT(^). 

In writing a Langlands decomposition P = MAN, we have implicitly fixed 
a Cartan involution 6. Choose a 0-stable compact Cartan subgroup T Ç M 
and write H = TA for the corresponding 0-stable Cartan subgroup of G. The 
representation 6 determines (up to conjugacy under W(M,T)) a positive root 
system A+(m, t) and a Harish-Chandra parameter À G t*. Put 

7 = ( A , " ) e t * + a * ^ * , 

JÎ(tf®«/) = {a€A(9,W|(a,'7>€Z}; 
as usual, à denotes the coroot 2a/(a, a). 
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The root system R(8 <S> v) has several additional structures: 
(1) 0 acts on R(8<g>v). 
(2) Each 0-fixed (that is, imaginary) root is either compact or noncompact. 
(3) Each (—0)-fixed (that is, real) root either does or does not satisfy a 

"parity condition" [3]. 
(4) There is a decomposition 

R(S <g> i/) = R++(S (g> v) U RQ(6 <8 v) U R—{6 <g> v) 

of the roots according to whether their inner products with 7 are positive, 
zero, or negative. 

(5) There is a distinguished choice A+(m, t) of positive imaginary roots. 
Fix a nonzero weight 0 G a* of a in g, and set 

R(8 X 1/)* = {«G #(« ® l/)|a|B G R • 0}. 

This root system inherits all the extra structure of R(8®v). Choose a positive 
root system RQ(8 ® 1/)̂  so that 

(a) R+{8 <8>1/)* D A+(m, t) n i?o(£ <8> 1/). 
(b) If a G Ro{6 <8> 1/)* and (-0a) G #++(6 0 1/)*, then a G i#(<5 (8) v). 
(c) If a; and —6a are distinct elements of RQ{8 (8 ^)^, then both belong to 

Ro(8 <8 ^)j or neither does. 
Define 

R#+(<S <8> 1/)* = #++(£ 0 1/)* U i îf (« (8) 1/)*, 

n = Rn(<S <g> 1/) = simple roots of RR+(8 0 1/)*. 

If —0 preserves R i?+ (£ <g> 1/)̂ , define C(£ ®i/)^ to be the empty root system. 
Otherwise, we can write 

0 = Yl n°L°") 

aGlI 

with na a nonnegative rational number. We define 

nc r i t = Rn(<s ® i/)frit = {a G n|na ^ o}, 

C(<S (8) 1/)* = span of ncrit, 

the critical root system. 

PROPOSITION [5]. There is a connected simple group G with parabolic 

subgroup P = MAN, 8 G M, D G O * , etc., all unique up to isomorphism, 
such that 

(a) dim A = 1. 

(b) TT{V) = Indp(£ (8) v (8) 1) has integral infinitesimal character. 

(c) A(fl, fy) = R(8 <g> £) = C(6 (8> 1̂ )̂ , the isomorphism preserving the addi
tional structures (l)-(5) described above. 

The critical root system C(8 ® v)^ is said to be of reducible type if the 
representation ir(v) described by the proposition is reducible. 
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THEOREM. Let TT(U) = IndP(£ ® v) be a standard representation as de
scribed above. Then TT(U) ^ 7f(i/) (7r(i/) is distinct from its Langlands subquo
tients) if and only if there is a nonzero weight (j>ofa in g such that the attached 
critical root system C{8 ® v)^ (defined above) is nonempty and of reducible 
type. 

This was largely proved (implicitly) in [3]. Our solution to the reducibility 
problem (for classical groups) consists of a list of all critical root systems 
(together with the additional structures (l)-(5)) which are not of reducible 
type. For complex groups and GL(n, R), there are no such irreducible critical 
root systems (except the empty one), so the theorem reduces to results of 
Zhelobenko [9] and Speh [8], respectively. Kost ant's results [7] on reducibility 
of spherical series may be interpreted as describing certain irreducible critical 
root systems corresponding to the large region of irreducibility round v = 0. 
The group G of the Proposition in these cases has real rank one. This already 
accounts for many of the irreducible critical root systems. Most of the rest 
correspond to G of real rank 2. 

We also give tables describing the smallest real v for which n(v) is reducible 
when dim A = 1 and use these to study unitarizability of 7f (v) in that case. 
Details and proofs will appear elsewhere. 
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