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The cohomology theory of abstract groups is a tool kit, in much the same 
way as is representation theory. One of its attractions is its breadth: the 
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methods derive from algebra and topology and often connect with algebraic 
number theory. A good example is the theory of Euler characteristics, one of 
the highlights of the present book and one to which its author has made 
brilliant contributions. It may be of interest to trace one thread in the 
development of this topic. 

In 1951 Philip Hall gave a course of lectures in Cambridge on general group 
theory in which a certain numerical function made a fleeting appearance. If G 
is a group containing a finitely generated free abelian subgroup of finite index, 
then one may define the rank r(G) unambiguously to be the rank of any one 
such free abelian subgroup. Hall contrasted this rank function with another, 
defined whenever G is a finite extension of a finitely generated free group H. If 
n is the rank of H9 then the rational number 

S(G) = l + ( n - l ) / | G : # | 

is independent of the choice of H in G. Hall suggested that "fi-groups" might 
repay further study alongside the "groups with rank". For example, if A, B are 
rank groups, so is A X B and r(A X B) = r(A) + r(B); while if A9 B are 
8-groups, so is A * B and 8(A *B) = d(A) + 8(B). 

Ten years later, C. T. C. Wall (1961) independently came to the same 
conclusion as Hall, but by way of topology and in a more general context. Let 
the group G be a finite extension of a group H whose classifying space A" is a 
finite complex. If x( X) is the classical Euler characteristic of X9 then 

X(G)-X(X)AG:H\ 

is independent of H. The rational number x(G) is called the Euler characteris­
tic of G. If G happens to be a 8-group, then x(G) = l - S ( G ) . The additivity 
formula for Ô generalizes to one for free products with amalgamation and takes 
the following form: if G = A *CB9 then 

X ( G ) - X W + X ( * ) -X (C) 

(provided all x' s are defined). For example, x(SL2(Z)) = -1/12, because 
SL2(Z) =C4 *c2 Q, where Cn denotes a cyclic group of order n. 

There is another reason why SL2(Z) has an Euler characteristic: its commu­
tator subgroup is free of rank 2 and has index 12. Viewed in this way, SL2(Z) 
is the tip of an enormous iceberg: it is an example of an arithmetic group and 
all such groups are of the type considered by Wall. The situation is as follows. 
Let G be an algebraic subgroup of GL„ defined over Q and T an arithmetic 
subgroup of G(Q) (meaning that T n G(Z) has finite index in both T and 
G(Z)). Then T is a discrete subgroup of the Lie group G(R). If A' is a maximal 
compact subgroup of G(R), then X = G(R)/K is diffeomorphic to a euclidean 
space of dimension say d. Now T acts on X and the stabilizers of points are 
finite subgroups. 

There exists in T a torsion-free subgroup, say H, of finite index. It follows 
that the action of H on X is free and so the cohomological dimension cd H of 
H is at most d. If X/H is compact, then cd H equals d\ but even when X/H is 
not compact, a formula for cd/f was found by Borel and Serre (1974), 
provided G is semisimple and connected. They did this by enlarging X and the 
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action of H to a manifold with corners X so that X is the interior of X and 
X/H is compact. Then X/H has the homotopy type of a finite complex. The 
number cd H is independent of the choice of H inside T, whence T has an 
Euler characteristic in the sense of Wall. 

Number theory enters through the work of Harder (1971). The Gauss-Bon­
net measure on X lifts to a unique invariant measure /A on G(U). Harder 
proved the deep theorem that x(H = fx(G(U)/T). This leads to an explicit 
fromula for x(G(Z)) in terms of values of the zeta-function. For example, 
X(SL2(Z)) = f(-l) and since f(-l) = -1/12, this gives a third way of arriving 
at the Euler characteristic of SL2(Z). 

Serre (1971) utilized Harder's results and integrality properties of x(T) to 
establish integrality results about the values of the zeta-function of a number 
field. His very influential article contains the first coherent account of the basic 
facts on Euler characteristics of abstract groups. Brown's important paper 
(1974) is a direct outgrowth of Serre's work. In this paper Brown extends the 
domain of definition of the Euler characteristic function to groups that are 
virtually FP. These are groups G that contain a subgroup H of finite index, 
where H is of type FP: this means that Z, as trivial //-module, admits an 
//-projective resolution of finite length with all terms finitely generated (or, 
equivalently, if H is finitely presented, that the complex K{H,1) is finitely 
dominated). The definition of x(^) is exactly the same as in Wall's case, but 
the fact that the resulting rational number is independent of H is nontrivial, a 
consequence of the result of Swan that a finitely generated projective module 
over a finite group is locally free. 

There is a remarkable integrality theorem of Brown that provides informa­
tion about the finite subgroups of G in terms of x(G). If G is virtually FP and 
d is the lowest common multiple of the orders of the finite subgroups of G, 
then dx(G) is an integer. As a very special case, if His a free group of rank n9 
normal in G, of index a power of a prime p and p \ n - 1, then G splits over 
//. No direct proof of this result is known. 

All the above material occurs in the second half (Chapters 7 to 10) of 
Brown's book and much of it in Chapter 9 on Euler characteristics, where the 
integrality theorem and related results are proved. For the proofs, an under­
standing of finiteness conditions (such as cd and FP) is necessary and these, 
together with a welcome detailed account of their topological significance, are 
the subject of Chapter 8. A crucial ingredient in the proofs is a representation 
theory on CW-complexes, pioneered by Quillen. The resulting equivariant 
homology is studied in Chapter 7 and involves spectral sequences. These are 
still found forbidding by many people who are otherwise kindly disposed to 
homological algebra. I urge them to take the trouble to study this chapter 
thoroughly: they will be rewarded with a good grasp of how spectral sequences 
arise and are used in group theory. I quarrel only with the author's advice (on 
p. 162), after announcing he will omit certain proofs, that "the reader can 
either supply the missing proofs (which are routine) or consult any text which 
treats spectral sequences". The first alternative could be rather discouraging 
for a student who meets these matters for the first time, since the proofs 
cannot, in the nature of things, be routine to him. 



BOOK REVIEWS 243 

Chapters 7 to 10 are excellent. The author shows faultless judgment in what 
to prove, what to summarize and what to omit; he takes the reader frequently 
to the frontiers of research. For the record, I note three items that can be 
updated: p. 219, in Example 8, the work of Alperin and Shalen has now 
appeared (1982); p. 223, Eckmann and Linnell (1983) have completed the 
classification of Poincaré duality groups of dimension 2; p. 241, the Bass 
conjecture has been established by Linnell (1983) for all locally residually finite 
groups (Lemma 4.1). Further, Exercise 2 on p. 252 presents a theorem of 
Gottlieb that establishes a fascinating link between the Euler characteristic of a 
group and its commutator structure; a recent paper of Gottlieb (1983) carries 
this further. 

I am not so happy with the first half of the book. This contains all the 
material one would normally expect in a course on group cohomology. The 
author's declared intention is to develop the subject from the beginning for 
students who know a little algebra and a little topology and to " take neither a 
purely algebraic nor a purely topological approach". This is laudable, but I 
fear that the balance has tipped decidedly in favour of topology. The treatment 
could easily frighten off students with the "wrong" background who need to 
know about group cohomology; this would be a great pity since it is precisely 
such students who would gain most from seeing topology at work in a 
group-theoretic setting. In fact, the knowledge of topology needed to read 
Brown's book is not extensive; a preliminary study of a text such as Massey 
(1967) is quite sufficient. Students with the "right" background suffer in a 
different way, by being denied many simplifying insights from group theory. 
For example, Hopf s description of H2G is a completely elementary result if 
done algebraically, but this is far from evident in the topological derivation 
given in Chapter 2 (though it is true that there are exercises in Chapter 4 from 
which the algebraic proof can be extracted). Again, the standard resolution is a 
natural enough object topologically but it has no significance in group theory; 
there exist resolutions that have. Doing extension theory by manipulations 
with factor sets ignores the existence of underlying constructions which explain 
why it works; an account of extension theory from the group theoretic point of 
view is given in D. J. S. Robinson's book (1982). 

The emphasis on topology in the early chapter of Brown's book can be 
justified on historical grounds and, more to the point, by the fact that topology 
is indispensable for the work reported on in the last chapters. The book fills an 
important gap in the literature. I hope it will be studied by all who wish to 
understand group cohomology; they will be richly rewarded. 
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Let ^ be a metriza^le compact set and let C(K) denote the space of 
continuous functions on K endowed with the supremum norm. C(K)9s are, 
together with the Hilbert space, the most "popular" Banach spaces, applied 
and studied in practically every branch of analysis. For example, recall that 
every separable Banach space is linearly isometric to a subspace of, e.g. 
C([0,1]); a stochastic process can be thought of as a probability measure on 
C([0, T]). (More specifically, let us mention Ciesielski's construction of the 
Brownian motion using the Faber-Schauder basis of C([0,1]); see [2]; more 
about this later.) 

Both for numerical and theoretical purposes the need arises to consider 
approximations of continuous functions. This is done by using Schauder bases 
(such as spline bases, etc.). Recall that a sequence ( fn) of elements of a Banach 
space X is called a Schauder basis iff every element f of X can be uniquely 
written as the sum (convergent in X) E n e Nf„/ n , tn being scalars. The partial 
sums SNf = E^Lx tnfn are then the successive approximations off. 

It has been known for quite a while (some 30 years) that every C(A^)-space 
has a Schauder basis; moreover, a complete isomorphic classification of 
C(K)9s as Banach spaces has been available for almost as long [1, 5, 7, 8]. 
More recently, it has been shown that in fact any separable space from a larger 
class of «S?00-spaces (or JS?*, 1 < p < oo) has a basis [6]; this, however, is not 
discussed in the book. The above contrasts with negative results for general 
Banach spaces: some of them do not even possess the much weaker approxi­
mation property (Enflo [3]). 

The question of existence being settled, the emphasis switches to looking for 
bases with "nice" properties and to studying specific bases. To these the bulk 


