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JULIA SETS AND BIFURCATION DIAGRAMS 
FOR EXPONENTIAL MAPS 

BY ROBERT L. DEVANEY 

ABSTRACT. We describe some of the bifurcations that occur in the 
family of entire maps E\(z) = \exp(z). When X = 1, it is known that 
J(E\) = C. We show that there are many other values for which this 
happens. However, in each case, there are nearby X-values for which 
J(E\) is nowhere dense. 

Let F(z) be an entire transcendental function. The Julia set of F, denoted 
by J{F), is the set of points at which the family of iterates of F (i.e. 
F , FoF = F 2 , F 3 , . . . ) fails to be a normal family. Equivalently, J{F) is 
the closure of the set of nonattracting periodic points of F . It is known [F] 
that J(F) is a closed, nonempty, perfect set which is invariant under F and 
all branches of F _ 1 . Moreover, most of the interesting chaotic dynamics of 
the map occur on the Julia set. 

There has been much recent work on the structure of the Julia set of 
complex analytic functions [B, DH, R, S, MSS]. Most of this work is restricted 
to the polynomial or rational function case. Our goal in this note is to point 
out that, while entire functions share many of the properties of these maps, 
there are several significant differences. 

We will concentrate on the one-parameter family of maps E\{z) = Xexp(^) 
where X € C. Similar results hold for other classes of entire maps, e.g. z —• 
a + b sin(z) and z —• Q(z) exp(P(z)) where P and Q are polynomials. A major 
difference between the exponential family and polynomials is the possibility 
that J{E\) = C. Indeed, Misiurewicz [M] has recently shown that J"(e*) = C, 
answering affirmatively a sixty year old question of Fatou [F]. It turns out 
that this is a common occurrence for entire maps. 

1. The exponential family. The family of functions E\ is a natural family 
of complex analytic maps in the sense that any entire function which is 
topologically conjugate to some E\ is in fact affinely equivalent to a member 
of this family. This essentially follows from the fact that E\ has no critical 
points and one omitted value. The orbit of the omitted value at 0 is the 
crucial factor which governs the dynamics of E\. 

PROPOSITION. 1. IfE%(0) - • oo, then J(E\) = C. 
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2. /ƒ0 is preperiodic (i.e. E"(Ö) is periodic for some n > 1), then again 
J(EX) = C. 

3. IfE\ has an attracting periodic orbit, then 0 lies in the basin of attraction 
of this orbit. 

The proofs of 1 and 2 rely on an extension of the classification theorem of 
Sullivan [S] to the case of E\. Part 3 is classical and implies that any E\ can 
have at most one attracting periodic orbit. 

COROLLARY. 1. J(E\) = C if X > 1/e. 

2. J(EX) = Cif\ = km, k G Z. 

PROOF. One checks easily that E%(0) - • oo if X > 1/e. If X = 2kmy then 
El(0) = 2km = Ex(0). If X = (2fc + l)m, then E{(0) = -{2k + l)iri = £*£(0). 
Hence the proposition applies. 

COROLLARY. There is a Cantor set of curves in the \-plane for which J(E\) 
= C. 

The proof of this corollary relies heavily on the structure of the Julia set for 
E\. It is known [DK] that repelling periodic points lie at the ends of curves or 
"hairs" which stretch to infinity. All points on these hairs except the periodic 
point tend to infinity under iteration of E\. One then arranges for X = E\(0) 
to lie on such a curve so that E%(0) —• oo. 

2. Perturbations of exp(^). The fact that #£(0) -> oo for X = 1 can be 
dramatically altered by allowing X to be complex. 

THEOREM. 1. There exists a sequence \(i) —• 1 such that 0 is preperiodic 
forEHi). 

2. There exists a sequence fj,(i) —• 1 such that for all i > 3, E^) has an 
attracting periodic point of period i. 

COROLLARY. ez is not structurally stable. 

REMARK. This fact is an essential ingredient in the recent proof by Ghys, 
Goldberg, and Sullivan [GGS] that e* is recurrent. The important question of 
the ergodicity of e? remains open. 

For the proof of part 1, define the family of functions Gn(X) = E%(0). This 
family is not normal in any neighborhood of 1. By MonteFs Theorem, there 
exist X-values arbitrarily close to 1 such that Gi(k) = 2km for any k € Z. But 
then Gi+i(X) = X = E\(0) so 0 is preperiodic and X is periodic. 

The proof of part 2 is somewhat more complicated and will appear later. 

3. The bifurcation diagram of E\. Douady and Hubbard have shown 
[DH] that the bifurcation diagram for the one-parameter family of quadratic 
maps z -> z2 + X has a rich and interesting structure. This is the so-called 
Mandelbrot set (see [Ma]). The corresponding diagram for E\ possesses many 
of the same features but also some startling differences. The results of the 
previous section indicate that this set should be quite complicated, at least 
near X = 1. 
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Let Ck = {X G C | E\ has an attracting periodic orbit of period k}. The 
Ck are disjoint open sets in the X-plane since each E\ can have at most one 
attracting periodic orbit. The proofs of the following are straightforward. 

1. C\ is bounded by a cardioid-like curve given by X = çe~* where \ç\ = 1. 
Indeed, if X = çe~*, then ç is a fixed point for E\ and, moreover, E^(ç) = £. 
Hence the eigenvalue of E'x at the fixed point traverses the unit circle once as 
X traverses the cardioid. 

2. For each nth root of unity fn, a component of Cn touches C± at X = 
fne~^n. This component is a "tongue" which is simply connected and extends 
to infinity. This follows by applying the maximum principle to the eigenvalue 
map X —• {Ey)'{zn), where zn is the attracting periodic point. This map omits 
0 if n > 1. 

3. The period 2 tongue contains all X with X < —e. The attracting period 
two points in this case are real. One may check that the equations E\(z) = z 

and (E%)'(z) = 1 (or — 1) have infinitely many solutions on the boundary of 
this tongue. Hence the eigenvalue traverses the unit circle infinitely often 
as X traverses the boundary of this tongue. This generates infinitely many 
cusp-like points on this curve, as on the cardioid, as well as additional, higher 
period tongues emanating at roots of unity. 

4. According to the results in §1, there is also a collection of curves in the 
X-plane on which J(E\) = C. These curves accumulate on X = 1. 

Figure 1 gives a computer sketch of the bifurcation diagrams for E\. 
Clearly, many questions remain. Are the Ck dense? Is there an open set 
of X-values for which J(E^) = C? 

4. The global saddle node bifurcation. Many of the bifurcations which the 
E\ undergo are well understood locally. However, they are often accompanied 
by spectacular changes in the Julia set. We give one example: the saddle-node 
bifurcation. 

FIGURE 1. The topological structure of the bifurcation diagram of\ez. Unshaded re­
gions are the Ck*s. Black regions correspond to curves where the Julia set is the whole 
plane. The computer algorithm used to generate this picture simply colored a point if 
the corresponding exponential map satisfied Re/s^O) > 100 for some n < 100. 
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FIGURE 2. J(E\) for X > 1/e is a Cantor set of curves. 

Let X = l/e. For this value of X, E\ has a fixed point at 1 with E'x(l) = 1. 
When X > 1/e, this fixed point separates into two repelling fixed points, one 
on each side of the real axis. On the other hand, when 0 < X < 1/e, E\ has 
two fixed points at q < 1 < p on the real axis. One checks easily that q is 
attracting and p is repelling. This is the usual saddle-node bifurcation in the 
complex plane. 

The global strucure of J(E\) is quite different depending upon whether 
X > 1/e or X < 1/e. 

THEOREM. 1. If X > 1/e, J(E\) = C. 

2. /ƒ 0 < X < 1/e, J(E\) is a Cantor set of curves lying to the right of the 
vertical line x = p. 

PROOF. 1 follows from the Proposition in §1. For 2, note that the vertical 
line x = p is mapped to the circle of radius p about the origin. Hence all 
points with Rez < p lie in the basin of attraction of q and are therefore not 
in J(EX). 

To see the Cantor set of curves, note that the preimage of the half plane 

Rez > p is a countable collection of parabolic regions within Rez > p. Taking 

repeated inverse images of these sets yields a set depicted in Figure 2. Using 

the fact that |^x(^)l > 1 if Re^ > P, it follows that this is the Julia set of EX-

REFERENCES 

[B] P. Blanchard, Complex analytic dynamics, Bull. Amer. Math. Soc. (to appear). 
[DK] R. Devaney and M. Krych, Dynamics ofExp(z), Ergodic Theory Dynamical Systems 

(to appear). 
[DH] A. Douady and J. Hubbard, Iteration des polynômes quadratiques complexes, C. R. 

Acad. Sci. Paris 294 (1982), 123-126. 
[F] P. Fatou, Sur titeration des fonctions transcendantes entières, Acta Math. 47 (1926), 

337-370. 
[GGS] E. Ghys, L. Goldberg and D. Sullivan, On the measurable dynamics of z -+ tz 

(preprint). 



JULIA SETS AND BIFURCATIONS 171 

[J] G. Julia, Iteration des applications fonctionnelles, J. Math. Pures Appl. (1918), 47-245. 
[Ma] B. Mandelbrot, The fractal geometry of nature, Freeman, San Francisco, 1982. 
[MSS] R. Mané, P. Sad and D. Sullivan, On the dynamics of rational maps (to appear). 
[M] M. Misiurewicz, On iterates of e*, Ergodic Theory Dynamical Systems 1 (1981), 

103-106. 
[R] M. Rees, Positive measure sets of ergodic rational maps (preprint). 
[S] D. Sullivan, Quasi-conformal homeomorphisms and dynamics. EL (to appear). 

DEPARTMENT OF MATHEMATICS, BOSTON UNIVERSITY, BOSTON, MASSACHUSETTS 

02215 


