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DEFINABLE SETS IN ORDERED STRUCTURES 

BY ANAND PILLAY AND CHARLES STEINHORN1 

1. Introduction. We introduce the notion of an O-minimal theory of ordered 
structures, such a theory being one such that the definable subsets of its models 
are particularly simple. The theory of real closed fields will be an example. 
For T an O-minimal theory we prove that over every subset A of a model 
there is a prime model, which is unique up to A-isomorphism. We also prove 
in our model-theoretic context results on the structure of semialgebraic sets. 
Our work was directly stimulated by the paper of van den Dries [4]. 

2. Definitions and examples. L will be a unitary first order language which 
contains, among other things, a symbol <. We shall be concerned with infinite 
L-structures M in which < denotes a linear ordering of M. For example if L 
has symbols <, +, 0, then an ordered group is just an L-structure G which 
satisfies the axioms for ordered groups. A definable subset of Mn is a subset 
X c Mn of the form {ö G Mn : M t= <p(ö,m)} for some Zrformula (f{x,y) 
and m G Mr, r < w. So the definable sets are those which are obtained from 
the sets defined with parameters from the basic relations and functions on 
M, by closing under finite unions, finite intersections, complementation and 
projection. An interval of M is something of the form (a, 6), [a, 6], (a, b] or 
[a, 6), where a, b G M (or a = —oo, or b = +oo). (Such an interval is clearly 
definable.) 

DEFINITION 1. (i) M is O-minimal if every definable set X c M is a finite 
union of rational intervals of M. 

(ii) A complete L-theory T is O-minimal if every model of T is O-minimal. 
Note that in Definition 1 no condition is placed on the definable subsets 

of Mn. An important consequence of the definition is that an O-minimal 
structure is definably complete; namely every definable subset of M which is 
bounded above has a supremum in M (and similarly for infimums). 

A consequence of the Tarski-Seidenberg theory [3] (i.e. quantifier elimina­
tion), is that any real closed field is O-minimal. In fact if K is a real closed 
field then the definable subsets of Kn, n < u>, are precisely the semialgebraic 
sets over K. The following is proved, essentially using the "definable com-
p^teness^ of O-minimal structures: 

THEOREM 2. (i) An ordered group G is O-minimal just if G is abelian and 
divisible. 

(ii) An ordered unitary ring R is O-minimal just ifR is a real closed field. 
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Other examples of O-minimal theories (other than the theory of real closed 
fields and the theory of ordered divisible abelian groups) are the theory of 
dense linear orderings with no first or last element, and the theory of discrete 
linear orderings with no first or last element. (This follows from the fact that 
these theories have quantifier elimination.) 

Another important observation is that if M, N are models of an O-minimal 
theory T, M < N and a G N, then the type of a over M, tp(a/M) is 
determined by the cut that a realizes in M. 

THEOREM 3. IfTis O-minimal and K > \T\, then T has at most one model 
of cardinality /c which is K-saturated with respect to the quantifier free language 
of order. 

The theorem of Erdös, Gillman and Henriksen [1] on the uniqueness of 
a real closed field of cardinality Na and order type r/a, a > 0, follows from 
Theorem 3. 

3. Definable functions. 

LEMMA 4. Let M be O-minimal. Let a,b € M and let ƒ : (a, 6) —• M be 
a definable function. Then there are a — ÜQ < Oi < • • • < On = 6 such that on 
each (oi,Oi+i) ƒ is either constant or strictly monotone and continuous. 

Lemma 4 was proved by van den Dries [4] in the special case where the 
underlying order on M is that of R. The general case relies again on being 
able to use the definable completeness of M in place of the completeness 
ofR. 

For a € M, A c M we say a G cl(A) if there is a function /(x) definable 
without parameters such that ƒ (5) = a for some b from A. Lemma 3 imphes 
that if M is O-minimal, then b e c\(Aö {a}), b &c\(A) =* a e cl(AU {&}). 
As usual one extracts a notion of independence and dimension: if A, B c M, 
dim(A/B) = the cardinality of a maximal subset A' cA which is independent 
over B. 

4. Existence and uniqueness of prime models. I f A c M , M is said to 
be prime over A if for any N D A, with (N, a)aeA = {M, a)aeA, there is an 
elementary embedding F: M —• N which fixes A pointwise. For example 
if k c K are ordered fields and K is the real closure of k then K is prime 
over A;. 

THEOREM 5. Let T be O-minimal, M = T and Ac M. Then there is 
a model N, with Ac N < M such that N is prime over A. Moreover N is 
unique up to A-isomorphism. 

An important part of the proof of uniqueness is: if N is prime over A, 
a, b € N, a, 6 € cl(A), (a, b) 0 cl(A) = 0 , then dim((a, b)/A) < N0. 

We should note that if i f is a real closed field and kcK, then cl(fc) is just 
the field-theoretic algebraic closure of k in K, and so K prime over k means 
K — cl(fc). In this case there do not exist o, 6 G cl(fc) with (a, b) O cl(fc) = 0 . 

From the point of view of model theory, a strong assumption such as 
O-minimality is required to guarantee the existence of prime models. For 
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example, let Pi,P2 be unary predicates on Q such that both Pi,P2 are dense 
in Q and Pi U P2 = Q. Let M be the resulting expansion of (Q, <) and let 
A = Pff = elements of M in Pi. Then there is no prime model over A 
Note M is not O-minimal, as for example the definable set P%* is not of the 
required form. 

Another model-theoretic result is 

THEOREM 6. Let T be O-minimal and ^-categorical. Then T is finitely 
axiomatisable. 

In fact we have described completely the No-categorical O-minimal theories. 
The main point is that No-categoricity precludes the existence of any nontrivial 
definable function of more than one variable. 

5. Decomposition. Here we assume the underlying order to be dense with 
no first or last element. By definition the definable sets (of elements) in models 
of an O-minimal theory have a simple structure. Abstractly, we would like to 
deduce a nice structure for the definable sets of n-tuples (i.e. definable sets 
X c M n , M = T). In the case of (R, <,+,•) this reduces to studying the 
structure of the semialgebraic sets, a well-known enterprise [2, 5]. Our main 
point is that known results in this special case can be proved in our general 
model-theoretic context, in particular without the specific use of algebraic, 
(e.g. differential) structure. The possibility of such proofs was raised by van 
den Dries [4], whose work we extend. 

THEOREM 7. Let T be O-minimal and M a model of T. Let <p(x\,..., xn, 
yif-yVr) be an L-formula. For each m G Mr let Xjn = {ôE Mn: M = 
<p(a,rn)} (So {Xm}m€Mr is a family of uniformly definable subsets of Mn.) 
Then there is a uniform finite bound on the number of connected components 
of the Xm as m ranges over Mr. 

What is the meaning of connected here? If M is an expansion of (R, <) we 
can mean the usual topological notion. Otherwise, we will say that a definable 
subset X of M n is connected if X is not the disjoint union of two nonempty 
definable, open subsets of X. The content of the theorem is that any definable 
subset of Mn is the union of a finite number of nice definable subsets of 
Mn—which we call n-cells—each of these being connected. Moreover an n-
cell is defined in a particular syntactic manner using definable functions. For 
example, a typical 2-cell has the form {(x,y): a < x < 6, f(x) < y < g(x)}, 
where a < b € M and ƒ, g are continuous definable functions on (a, b) such 
that ƒ(x) < g(x) Vx 6 (a, 6). To obtain the uniform bound as we vary the 
parameters, the (model-theoretic) compactness theorem is applied. 
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