ON THE YANG-MILLS-HIGGS EQUATIONS

BY CLIFFORD HENRY TAUBES¹

I. Introduction. The purpose of this note is to announce new results for the Yang-Mills-Higgs equations on R^3 . These SU(2) Yang-Mills-Higgs equations are a set of partial differential equations where the unknown is a pair, $c = (A, \Phi)$, with A a connection on the vector bundle $E = R^3 \times \mathfrak{su}(2)$ and Φ a section of E. Here $\mathfrak{su}(2)$ =Lie alg. SU(2). These equations are

(1)
$$D_A * F_A + [\Phi, D_A \Phi] = 0, \qquad D_A * D_A \Phi = 0,$$

with boundary condition $\lim_{|x|\to\infty} |\Phi|(x) = 1$. Here, the notation follows [1]. That is, F_A is the curvature of A, D_A is the exterior covariant derivative on $\bigwedge T^* \otimes E$ and $[\cdot, \cdot]$ is the natural, graded bracket on $\bigwedge T^* \otimes E$: If ω , η are, respectively, E-valued p,q forms, then $[\omega,\eta] = \omega \wedge \eta - (-1)^{pq} \eta \wedge \omega$. The ** in (1) is the Hodge star on $\bigwedge T^*$ from the Euclidean metric on T^* . The norm $|\cdot|$ on $T^* \otimes E$; is that induced from the Euclidean metric on T^* and the Killing metric on SU(2).

Equation (1) is the variational equation of an action functional

(2)
$$A(A, \Phi) = \frac{1}{2} \int_{R^3} \{ |F_A|^2(x) + |D_A \Phi|^2(x) \} d^3x.$$

One is to consider A as a function on the set

(3)
$$\mathcal{C} = \{ \text{smooth } (A, \Phi) : \mathcal{A}(A, \Phi) < \infty \text{ and } 1 - |\Phi|(x) \in L^6(\mathbb{R}^3) \}.$$

 $\mathcal C$ is topologized as follows [2]: Let θ denote the flat, product connection on E. The topology of $\mathcal C$ is defined to be the weakest for which the map sending $C = (A, \Phi) \in \mathcal C$ to

$$(A - \theta, \mathcal{A}(c)) \in \Gamma(T^* \otimes E) \times \Gamma(E) \times [0, \infty)$$

is continuous.

The topological group

(4)
$$\mathcal{G} = \{\text{smooth, unitary automorphisms of } E\},\\ = C^{\infty}(R^3; SU(2))/\{+1\}$$

acts continuously on \mathcal{C} and leaves \mathcal{A} and (1) invariant. The subgroup $\mathcal{G}_0 = \{g \in \mathcal{G} \colon g(0) = 1\}$ acts freely on \mathcal{C} . Let $\mathcal{B} = \mathcal{C}/\mathcal{G}_0$ denote the quotient. The functional \mathcal{A} descends as a continuous, SO(3) invariant function on \mathcal{B} .

The relationship between A and B is described in the following theorems.

Received by the editors October 28, 1983.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 35Q20, 58G20, 81E10; Secondary 55Q52.

¹NSF Postdoctoral Fellow in Mathematics

THEOREM 1. The space $\mathcal B$ is homotopic to the space of smooth maps from S^2 to S^2 , Maps $(S^2;S^2)$. The space $\mathcal B$ has a compatible Fréchet space structure for which $\mathcal A$ is a smooth function. With this smooth structure, a point $[A,\Phi]\in\mathcal B$ is a critical point of $\mathcal A$ if and only if $(A,\Phi)\in\mathcal C$ satisfies (1).

Thus, \mathcal{B} is topologically the disjoint union of spaces \mathcal{B}_n , $n \in \mathbb{Z}$, with each \mathcal{B}_n homotopic to the space of degree n maps from S^2 to S^2 (cf. [2, §3 and Appendix 2]).

It has previously been established that \mathcal{A} takes on its minimum on each \mathcal{B}_n [3, 4, 5], and, by a min-max argument, that \mathcal{A} has a nonminimal critical point on \mathcal{B}_0 [2, 6]. A new min-max theory for \mathcal{A} on \mathcal{B} and the nontrivial topology of \mathcal{B}_n results in

THEOREM 2. For each n, A, when restricted to B_n , has an unbounded set of critical values.

Restrict \mathcal{A} to \mathcal{B}_n , $n \in \mathbb{Z}$. One observes that $\mathcal{A} \geq 4\pi |n|$, with equality at the minima on \mathcal{B}_n where the Bogomol'yni equations are satisfied [7]:

(5)
$$F_A = \operatorname{sign}(n) * D_A \Phi.$$

The set of $[A, \Phi] \in \mathcal{B}_n$ which solve (5) is called the moduli space, \mathcal{M}_n , of self-dual monopoles. One can study these spaces using twistor techniques [8, 9, 10]. But still, little is known about them.

By applying the new min-max theory as in [11], one can study the topology of \mathcal{M}_n via the embedding of \mathcal{M}_n in \mathcal{B}_n . Of import here is an observation from [12] that the hessian of \mathcal{A} at a nonminimal critical point in \mathcal{B}_n must have index larger than |n|. One obtains as a result

THEOREM 3. For each n, the inclusion $M_n \to B_n$ induces an isomorphism of the pointed homotopy groups $\pi_l(\cdot)$ for $0 \le l \le |n| - 1$ and an epimorphism of $\pi_{|n|}(\cdot)$.

The details and proofs of these results are forthcoming [13]. The motivation for the new min-max theory for $\mathcal A$ is obtained by considering the following isotopy of $\mathcal B$: First, flow from $c=[A,\Phi]$ along a vector field which is minus the gradient of $\mathcal A$ on domains in R^3 where $\Psi\equiv(|F_A|,|D_A\Phi|,1-|\Phi|)$ is small, and which is zero elsewhere. This flow converges since it is a perturbation of a linear flow. The limit, $c'=[A',\Phi']$ satisfies (1) on domains in R^3 where Ψ is small. Next, flow along minus the gradient flow of $\mathcal A$, projected to maintain (1) in the small Ψ domains. The a priori estimates from [1] for Ψ in the small Ψ regions (where (1) is satisfied) allow one to prove that the large Ψ regions remain in a bounded set on R^3 for all $t\in(0,\infty)$. Under these conditions, K. Uhlenbeck's compactness theorems [14] imply convergence for the flow.

References

- 1. A. Jaffe and C. H. Taubes, Vortices and monopoles, Birkhauser, 1980.
- 2. C. H. Taubes, The existence of a non-minimal solution to the SU(2) Yang-Mills-Higgs equations on \mathbb{R}^3 . I, II, Comm. Math. Phys. 86 (1982), 257; ibid. Comm. Math. Phys. 86 (1982), 299.

- 3. ____, The existence of multi-monopole solutions to the non-abelian, Yang-Mills-Higgs equations for arbitrary, simple gauge groups, Comm. Math. Phys. 80 (1981), 343.
 - 4. R. Ward, A Yang-Mills-Higgs monopole of charge 2, Comm. Math. Phys. 80 (1981), 137.
- 5. E. Corrigan and P. Goddard, An n-monopole with 4n-1 degrees of freedom, Comm. Math. Phys. 80 (1981), 575.
 - 6. D. Groisser, SU(2) Yang-Mills theory on R³, Harvard Univ. Preprint, 1983.
- 7. E. B. Bogomol'nyi, The stability of classical solutions, Soviet J. Nuclear Phys. 24, (1976), 449.
 - 8. N. J. Hitchin, Monopoles and geodesics, Comm. Math. Phys. 83 (1982), 579.
- 9. W. Nahm, All self-dual monopoles for arbitrary gauge group, TH. 3172-CERN, 1981 (preprint).
 - 10. N. J. Hitchin, On the construction of monopoles, Comm. Math. Phys. 89 (1983), 145.
 - 11. C. H. Taubes, Path connected Yang-Mills moduli spaces (preprint).
 - 12. ____, Stability in Yang-Mills theories, Comm. Math. Phys. (to appear).
 - 13. ____, A min-max theory for the Yang-Mills-Higgs equations (forthcoming).
- 14. K. K. Uhlenbeck, Connections with L^p bounds on curvatures, Comm. Math. Phys. 83 (1982), 31.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720