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ON THE YANG-MILLS-HIGGS EQUATIONS 

BY CLIFFORD HENRY TAUBES1 

I. Introduction. The purpose of this note is to announce new results for the 
Yang-Mills-Higgs equations on i?3. These SU(2) Yang-Mills-Higgs equations 
are a set of partial differential equations where the unknown is a pair, c = 
(A, $), with A a connection on the vector bundle E = R3 x su(2) and $ a 
section of E. Here su(2) =Lie alg. SU(2). These equations are 

(1) DA*FA+ [*, DAQ] = 0, DA * DA$ = 0, 

with boundary condition lim|x|_>oo |$|(z) = 1. Here, the notation follows [1]. 
That is, FA is the curvature of A, DA is the exterior covariant derivative on 
f\T* <g>E and [•,•] is the natural, graded bracket on /\T* <g>E : If w, 77 are, 
respectively, unvalued p, q forms, then [w, 77] = w A r\ — (—l)pqrj A LJ. The * in 
(1) is the Hodge star on f\T* from the Euclidean metric on T*. The norm | • | 
on T* 0 E ;i8 that induced from the Euclidean metric on T* and the Killing 
metric on su(2). 

Equation (1) is the variational equation of an action functional 

(2) A(A, «) = i f^{\FA\*(x) + P A $ | 2 ( X ) } d3x. 

One is to consider A as a function on the set 

(3) C = {smooth (A, • ) : A(A, • ) < 00 and 1 - |$|(x) E L6(#3)}. 

C is topologized as follows [2]: Let 0 denote the flat, product connection on 
E. The topology of C is defined to be the weakest for which the map sending 
C = ( A , $ ) € C t o 

(A - 0, A{c)) e T(T* ®E)x T{E) x [0,00) 

is continuous. 
The topological group 

Q = {smooth, unitary automorphisms of E}, 
( } =C°°(#3;SU(2))/{±1} 

acts continuously on C and leaves A and (1) invariant. The subgroup §0 = 
{9 € 9: 0(0) = 1} a c^ s fr^ly on C. Let B = C/9o denote the quotient. The 
functional A descends as a continuous, SO(3) invariant function on fl. 

The relationship between A and S is described in the following theorems. 
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THEOREM 1. The space B is homotopic to the space of smooth maps from 
S2 to S2, Maps(52; S2). The space B has a compatible Fréchet space structure 
for which A is a smooth function. With this smooth structure, a point [A, $] G S 
is a critical point of A if and only if {A, $) G C satisfies (1). 

Thus, S is topologically the disjoint union of spaces Bn, ne Z, with each 
Bn homotopic to the space of degree n maps from S2 to S2 (cf. [2, §3 and 
Appendix 2]). 

It has previously been established that A takes on its minimum on each Bn 

[3, 4, 5], and, by a min-max argument, that A has a nonminimal critical point 
on So [2, 6]. A new min-max theory for A on S and the nontrivial topology 
of Bn results in 

THEOREM 2. For each n, A, when restricted to Bn, has an unbounded set 
of critical values. 

Restrict A to Sn, n G Z. One observes that A > 47r|n|, with equality at the 
minima on Bn where the Bogomol'yni equations are satisfied [7]: 

(5) FA = sign(n)*£>A$. 

The set of [A,$] G Bn which solve (5) is called the moduli space, Mn, of self-
dual monopoles. One can study these spaces using twistor techniques [8, 9, 
10]. But still, little is known about them. 

By applying the new min-max theory as in [11], one can study the topology 
of M n via the embedding of Mn in Sn« Of import here is an observation from 
[12] that the hessian of A at a nonminimal critical point in Bn must have index 
larger than |n|. One obtains as a result 

THEOREM 3. For each n, the inclusion Mn —• Bn induces an isomorphism 
of the pointed homotopy groups 7T/(-) for 0 < I < \n\ — 1 and an epimorphism of 
^ M CO-

The details and proofs of these results are forthcoming [13]. The motivation 
for the new min-max theory for A is obtained by considering the following 
isotopy of S: First, flow from c = [A,$\ along a vector field which is minus 
the gradient of A on domains in R3 where \I> = {\FA\, \DA$\, 1 —1$|) is small, 
and which is zero elsewhere. This flow converges since it is a perturbation of 
a linear flow. The limit, c' = [A, $'] satisfies (1) on domains in R3 where \1> is 
small. Next, flow along minus the gradient flow of A, projected to maintain 
(1) in the small ^ domains. The a priori estimates from [1] for ^ in the small 
^ regions (where (1) is satisfied) allow one to prove that the large V regions 
remain in a bounded set on R3 for all t G (0, oo). Under these conditions, K. 
Uhlenbeck's compactness theorems [14] imply convergence for the flow. 
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