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In the last fifteen years or so a great deal of work has been done on 
geometric problems related to unipotent elements of a semisimple or, more 
generally, reductive algebraic group G. If u is a unipotent element of G, one is 
interested, in particular, in geometric properties of ®M, the variety of fixed 
points of u for the action of G on the variety % of Borel subgroups of G, and in 
other closely related varieties. The varieties %u are of considerable interest in 
themselves. For example, for u a "subregular" element of G, they are closely 
related to the Kleinian singularities of a normal algebraic surface; see [4] for 
details. However, the chief motivation for the study of these varieties comes 
from two (apparently) distinct areas of representation theory: (i) the Deligne-
Lusztig theory of (complex) representations of the finite Chevalley group G(Fq) 
(here G is defined over the finite field F^); and (ii) the (infinite-dimensional) 
representation theory of U(Q), the universal enveloping algebra of g = Lie(G) 
(here G is defined over the complex numbers). In the representation theory of 
G(F )̂ and U(Q\ very deep and delicate properties of the varieties %u play a 
crucial technical role in a way that is only now beginning to be understood (by 
a few experts; the reviewer does not belong to this small group). For example, 
in some of the recent work on the subject the (Deligne-Goresky-Macpherson) 
intersection homology groups of %u play an important technical role; see [2] 
for more details. 

The Unk between the representation theories of G(Fq) and U(Q) and the 
varieties %u is the Springer theory of Weyl group representations [1]. Very 
briefly, this theory can be summarized as follows. If u is unipotent, there is a 
canonically defined representation of the Weyl group W of G on the (etale) 
cohomology groups H%%u). Let C be a set of representatives for the (finite) set 
of unipotent conjugacy classes of G. For u E C, let e(u) = dim®w. Then for 
each irreducible character x of W, there exists a unique u E C such that x 
occurs in the JT-module H2e{u\%). 

The main objective of Spaltenstein's book, Classes unipotentes et sous-groupes 
de Borel, is the study of the varieties %u. Chapter II, which is more than half of 
the book, is devoted to the study of these varieties. The author does not 
develop the Unk with the representation theories of G(Fq) and U(Q), nor with 
the Springer theory of Weyl group representations. However he does give a 
detailed and elegant treatment of geometric properties of %u. In the other 
chapters he gives very detailed information on classification of unipotent 
conjugacy classes, closures of unipotent classes, induced unipotent classes and 
the "Richardson classes" associated to paraboUc subgroups. He also discusses 
a duaUty theory for unipotent classes. 
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In most of the book the author considers the more general situation in which 
G is not necessarily connected, but the identity component G° is reductive. In 
this review we will confine our comments to the case of connected G. 

In order to discuss the results in Chapter II, we need more notation. Let G 
be a (connected) reductive algebraic group over an algebraically closed field 
and let $ denote the variety of Borel subgroups of G. Let B E <$, let T be a 
maximal torus of B and let W = NG(T)/T be the Weyl group. The variety % 
of unipotent elements of G is connected and irreducible, and the set Cl(%) of 
unipotent conjugacy classes is finite. If u E %, then Cl(w) denotes the con-
jugacy class of u. Let C be a set of representatives for the unipotent classes in 
G. 

For u E <?L, let S(u) denote the set of irreducible components of %u and let 
A(u) denote the finite group CG(u)/CG(u)°. Each element of A(u) permutes 
the elements of S(u). If o E S(u), then we frequently denote by Xa the 
corresponding closed irreducible subvariety of %u. If a, T E S(u), then Xa and 
Xr are of the same dimension. 

The Weyl group W enters the picture in the following manner. For each 
wEW, let 0(w) denote the G-orbit of (B, WB) on % X <$. It follows from the 
Bruhat decomposition of G that each G-orbit on % X <$ is equal to exactly one 
of the 0(H>)'S. If (a, T) E S(U) X 5(w), then there exists a unique w E Wsuch 
that 6(H>) n (XaX XT) is dense in Xa X XT; set H> = <pM(a, T). The map <ptt is 
constant on >4(w)-orbits on S(u) X S(u) and thus induces a map of the set of 
orbits (S(u) X 5(w))/^(w) to W. By a straightforward geometric argument, 
due essentially to Steinberg [3], it can be shown that the maps <pM, u E C, 
determine a bijection of UMeC(5(w) X S{u))/A(u) onto W. (For this result 
one needs minor restrictions on char(A').) If G is a classical group, then 
2M G C | S(U) I is equal to the number of involutions in W, which is in turn equal 
to the sum of the degrees of the irreducible representations of W. 

If G — GLn(K\ then the results are even sharper. In this case W is the 
symmetric group Sn and, for every « G | , CG(U) is connected and hence 
A(u) = {e}. Thus in this case we have a bijection of VuBC^(u) x ^(w) o n t o 

W. Let i / E l We may assume u is in Jordan canonical form. If Aj > X2 > 
• • • > Xr > 0 are the sizes of the Jordan blocks, then \(u) = (X^.. . ,Ar) is a 
partition of n and the conjugacy class of u is completely determined by the 
partition X(u). Thus we have a canonical bijective map from Cl(^l) to the set 
% of partitions of n. On the other hand the set of irreducible representations of 
W — Sn is canonically parametrized by the set 9n. If X E %, then the dimen­
sion of Mx, the corresponding irreducible 5^-module, is equal to the number of 
"standard tableaux of shape X". But there is a geometric connection. By a 
direct and elementary geometric argument, the author defines a natural bijec­
tion from the set S(u) to the set of standard tableaux of shape X(u). In 
particular, dim MX(u) =\S(u)\. Using the correspondence between S(u) and 
standard tableaux, the bijection UMEC5(w) X S(u) -> Sn can be interpreted as a 
bijection from the set of all pairs of standard tableaux of the same shape to the 
symmetric group Sn. But such a bijection is well known to combinatorialists; it 
is the Robinson-Shenstead correspondence. A previously unpublished proof 
(due independently to Steinberg and the author) that the above bijection agrees 
with the Robinson-Shenstead correspondence is given in this book. 
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We only have space to discuss a few of the results of Chapter II. However 
the flavour of the results is clear. There are remarkable and unexpected 
connections between the varieties ®u and the Weyl group and its representa­
tions. And for the case of GLn(K) one gets surprising new geometric interpre­
tations of classical combinatorial concepts related to the symmetric group. 

Chapter III discusses a possible duality theory for unipotent conjugacy 
classes. If w, v E %, then we say that Cl(w) ^ Cl(t>) if Cl(w) is contained in 
the closure of C\(v). For G = GLn(K) there is a natural order-reversing 
duality map, d: Cl(%) -* Cl(%), defined as follows: d(Cl(u)) = Cl(i>) if X(v) 
is the conjugate partition of X(u). In this case d is a bijection and d2 is the 
identity. To define what the author calls a duality map in the general case we 
need more notation. If P is a parabolic subgroup of G, then the Richardson 
class CP E Cl(%) is the class which contains a dense open subset of the 
unipotent radical of P. We let Cp E Cl(%) be the class containing the regular 
unipotent elements of a Levi subgroup of P. A duality map is a map d: 
Cl(%) -+ C\(%) satisfying the following conditions: (i) if C, ^ C2, then 
d(Cx) > d(C2); (ii) if P is a parabolic subgroup of (?, then d(Cp) — CP\ and 
(iii) C < d(d(C)) for every C. The author shows that for every reductive G 
there exists a duality map d, and that if G is a classical group, then d is unique. 
The approach is purely empirical and depends on complete information on the 
classification of unipotent classes and the order relation on these classes. 

Chapter IV consists of tables which summarize most of the known informa­
tion on classification of unipotent classes, closures of classes, induced con­
jugacy classes, centralizers of unipotent elements, etc. This information will be 
extremely useful to experts. 

As mentioned earlier, the author considers throughout most of this book 
unipotent elements in (not necessarily connected) algebraic groups G such that 
G° is reductive. This greater generality is a considerable complication. The 
author manages to handle the resulting technical problems in an impressive 
way. However, the greater generality means that most of the proofs are more 
complicated than for the case of connected groups. This has the unfortunate 
effect of making the book much more difficult to read than it would have been 
had the author restricted attention to the case of connected reductive groups. 

In conclusion, this is a careful and elegant treatment of a difficult and 
important topic in the theory of algebraic groups. It is certainly a very valuable 
book for the expert. However, it is not a book for beginners. 
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