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SUBDIFFERENTIABILITY SPACES AND NONSMOOTH ANALYSIS 

BY A. D. IOFFE 

We use the words "subdifferentiability space" as a collective name for 
classes of Banach spaces characterized by subdifferentiability properties of 
l.s.c. nonconvex functions defined on them. The classes were introduced by 
analogy with Asplund (differentiability) spaces [1], but the initial impulse came 
from nonsmooth analysis where one specific class had appeared quite naturally 
[2]. The purpose of the note is to introduce four classes of subdifferentiability 
spaces, describe their properties and the role of one of the classes in nonsmooth 
analysis. 

1. All spaces are assumed Banach and the functions extended real-valued. 
For a function / on X we set 

d o m / = {x| | / (x) |<oo}, 

U(f,z,6) = {x e dom / | | | x - z\\ < 6, \f(x)- f(z)\ < 6}, 

drf(z) h) = liminf t^tfiz + tu) - f(z)) 
u-+h 
t\0 

(z E dom / ) ; B, B* denote unit balls in X, X*. 
DEFINITION 1. Let / be a function on X, e > 0, and z € dom / . We denote 

by <p~{z) the set of all x* € X* such that 

liminf \\h\\-\f{z + h)-f{z)-{x\h))> - e , 
INI-o 

and by d~f(z) the set of all x* G X* such that 

(x;h)<dTf{z;h) + e\\h\\; 

<p~f{z) and d~f(z) will be respectively called the Frechet and the Dini e-
subdifferential of / at z. 

If z£ dom / , we set <p^~f{z) = d~f(z) = 0 . 
DEFINITION 2. X is a subdifferentiability (weak subdifferentiability) space 

or S-space (WS-space) if for any e > 0 every l.s.c. function / on X is Frechet 
(Dini) e-subdifferentiable on a dense subset of dom / . 
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DEFINITION 3. X is a trustworthy space or T-space if for any two l.s.c. 
functions / i , fi on X, any z G dom / i n dom /2 , any e > 0, 6 > 0 and any 
weak* neighborhood V C X* of zero, 

¥>7(h + /a) C U fo>r/i(*i) + ^c"/2(^2) + V). 
Xi€U(fi,g,6) 

Replacing <p~ by d~ in the inclusion, we obtain the definition of weak trustwor­
thy spaces (WT-spaces) [2]. 

(Other definitions of "trustworthiness" postulating one or another embryonic 
form of calculus are also possible.) 

2. The principal result will be stated below. In the statement we denote by 
P the property "X is a P-space"; A means "Asplund", WA—"weak Asplund", 
and F-spaces (G-spaces) are characterized by the property: "there exists a 
Frechet (locally Lipschitz and Gateaux) differentiable bump function" (i.e. a 
function g(x) such that g(0) > 0 and g(x) < 0 if ||x|| < 1). 

THEOREM 1. The following implications are valid: 

F =• T =• S =• A 

* * * 4 
G => WT =• WS WA. 

Implications F=>G, S=>WS, A=>WA are trivial. Implication S=>A was 
actually proved by Ekeland and Lebourg [3]; a much simpler proof can be 
obtained from Kenderov's characterization of Asplund spaces [4] which can 
be equivalently formulated in terms of Frechet e-subdifferentials: X is an 
Asplund space iff for any e > 0 every concave continuous function on X is 
Frechet e-subdifferentiable on a dense set 

The inclusions Theorem 1 actually announces are F=*T=>-S, G=>WT=»WS 
and T=>WT, of which F=>T and G=>-WT are the main. A detailed paper 
with proofs of Theorem 1 and Theorem 2 will appear in the Annals of the 
New York Academy of Sciences [5]. 

There are three questions that remain open: does WS imply WA, does S 
(WS) imply T (WT) and does A imply S? All obviously related to long standing 
problems: whether any Banach space with a Gateaux differentiable norm is a 
WA-space and whether any A-space has a Frechet differentiable norm. 

THEOREM 2. IfX is an S-space (WS-space), then so are (a) X x i ? n ; (b) any 
closed subspace ofX; (c) any quotient space X/L (with closed L). In particular, 
any Banach space which is a continuous image of an S-space (WS-space) is an 
S-space (WS-space). 

It is also possible to show that a closed subspace of a T-space (WT-space) 
is a T-space (WT-space), and that the property of being a T- or WT-space is 
an isomorphic property. 

3. The specific class that naturally arises in nonsmooth analysis is the class 
of WT-spaces. To explain how it happens we have to consider an extended 
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version of approximate subdifferentials first introduced in [6]. The results of 
this section are proved in [2]. 

We shall call a collection L of closed subspaces of X admissible if it is a 
directed set w.r.t. inclusion and every x G X belongs to some LE L- By /Q(X) 
we denote the restriction of / to Q c X , i.e. the function coinciding with / 
on Q and equal to oo outside of Q. 

DEFINITION 4. Let L be an admissible collection of subspaces of X. The 
set 

*£/(*)= n ~~U ar/*+L(*) 
e>0 X(zU(f,Z,6) 

(the bar denotes the weak* closure) is called the (broad) analytic approximate 
L-subdifferential of / at z. 

(There are also "narrow" subdifferentials in [2] which we do not consider 
here.) 

THEOREM 3. / / / is l.s.c., then d^f(z) is the same for all admissible families 
L formed by WT-subspaces ofX. 

Thus the notation 3 A / ( ^ ) may be used and (since every finite-dimensional 
space is a WT-space as follows from Theorem 1) 3 A / ( ^ ) coincides with the 
"grande sous-differentielles approchees" introduced in [6], hence having the 
whole set of analytic properties listed there. 

The last theorem we are going to state describes the place of approximate 
subdifferentials in nonsmooth analysis. Let us say that we are given a subdiffer-
ential on X if for any l.s.c. function / and any x G X a weak* closed (possibly 
empty) set df(x) is defined in such a way that: 

(a) 0 G df(x) if / attains a local minimum at x; 
(b) if / is convex, then df(x) is the subdifferential in the sense of convex 

analysis; 
(c) d(f + g)(x) C df(x) + dg(x) if one of the functions is Lipschitz near x. 
We shall say that d is a u.s.c. subdifferential if, in addition, the set-valued 

map x —• df(x) is u.s.c. (from the norm topology of X into the weak* topology 
of X*) at every x near which / is Lipschitz. A well-known example of a u.s.c. 
subdifferential is the generalized gradient of Clarke; dA is another example. 

THEOREM 4. Let d be a u.s.c. subdifferential onX. Then dAf(x) C df(x) 
whenever f is Lipschitz near x. 

Thus 3A is the minimal subdifferential for Lipschitz functions. We note 
in this connection that properties (a)-(c) are very natural for any "good" 
subdifferential and the upper semicontinuity property is absolutely unavoid­
able in many situations. 

We refer to [2] for further "geometric" approximate subdifferentials coincid­
ing with 3A on Lipschitz functions and smaller than 3A on all other functions 
which have stronger minimality properties. 
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