ON THE LOCAL LANGLANDS CONJECTURE IN PRIME DIMENSION

BY PHILIP KUTZKO1 AND ALLEN MOY

Let F be a local field of residual characteristics p. Then it is a conjecture of Langlands [JL] that there should be a natural bijection between the set of n-dimensional semisimple representations of the absolute Weil-Deligne group of F and the set of irreducible admissible representations of $GL_n(F)$. Some cases of this conjecture have been established [He, JL, JPS, K, M]. Here we announce further progress toward its verification.

To describe our results, we first note that by work of Bernstein and Zelevinsky [Z], one may restrict one's attention to irreducible representations of the Weil-Deligne group on the one hand and irreducible supercuspidal representations of $\mathrm{GL}_n(F)$ on the other hand. In this context, the conjecture says there should exist a bijection $\sigma \mapsto \pi(\sigma)$ of the set $\mathcal{A}_n^0(F)$ of equivalence classes of continuous, irreducible n-dimensional complex representations of W_F , the absolute Weil group of F, with the set $\mathcal{A}^0(\mathrm{GL}_n(F))$ of equivalence classes of admissible irreducible supercuspidal representations of $\mathrm{GL}_n(F)$. This bijection should satisfy the following conditions:

- (1.01) $\epsilon(\pi(\sigma), \psi) = \epsilon(\sigma, \psi)$ (see [**D**, **GJ**] for definitions),
- (1.02) $\pi(\sigma) \otimes \chi \circ \det = \pi(\sigma \otimes \chi)$ for all quasi-characters χ of F^x ,
- (1.03) $\omega_{\pi(\sigma)} = \det \sigma$, where $\omega_{\pi(\sigma)}$ is the central character of $\pi(\sigma)$.

We note that if n=1, the existence of such a bijection is a restatement of the fundamental theorem of local classified theory [S]; thus when $n \geq 2$, the conjecture under consideration may be thought of as a nonabelian analogue of that theorem.

When $n \geq 2$ the construction of $\pi(\sigma)$ breaks naturally into two steps.

I. Construction of $\pi(\sigma)$ when σ is induced from a representation of smaller dimension. This construction is provided when n=2 by decomposing the Weil representation of $\mathrm{SL}_2(F)$ (see [JL]). When n=3, it is obtained by global methods [JPS]. When $p \not\mid n$ then all n-dimensional irreducible representations σ of W_F are monomial, and one may use a representation which induces σ to construct a supercuspidal representation $\pi'(\sigma)$ of $\mathrm{GL}_n(F)$. This was first done by Howe [Ho], who conjectured that $\pi'(\sigma)$ satisfied (1.01)–(1.03). Recently, Moy [M] showed that a representation $\pi(\sigma)$ satisfying (1.01)–(1.03) may be obtained by a slight modification of Howe's construction and thus verified the Langlands conjecture in case $p \not\mid n$ (one needs, however, that $\mathrm{char}\, F = 0$ in order that the map $\sigma \mapsto \pi(\sigma)$ be bijective).

When $p \mid n$, however, the above approach appears to fail.

Received by the editors June 27, 1983.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 12B25, 20G05; Secondary 22E50, 12B15.

Supported in part by NSF Grant #MP575 07481.

^{© 1983} American Mathematical Society 0273-0979/83 \$1.00 + \$.25 per page

II. Extension of the map $\sigma \to \pi(\sigma)$ to primitive representations σ . Such an extension was obtained in case n=p=2 by Kutzko in [K] and in case n=p=3 by Henniart in [He], thus verifying the Langlands conjecture in these cases.

In general, one has reason to expect that step I above may be approached using global methods and that, in particular, such methods will lead to the construction of $\pi(\sigma)$ when σ is induced from a one-dimensional representation on a normal subgroup of W_F . We here announce that, given such a global construction for monomial representations σ of dimension n=p, we are able to construct $\pi(\sigma)$ for an arbitrary p-dimensional representation σ . To be precise, we must make the following

Assumption 1.1. Let K be a local field of residual characteristic p and let E/K be a cyclic extension of degree p. Let θ be a quasi-character of E^x which is not fixed by the galois group, $\Gamma_{E/K}$, of E/K and let $\sigma = \operatorname{Ind}_{W_E \uparrow W_K} \theta$. Then there is an irreducible supercuspidal representation $\pi(\sigma)$ of $\operatorname{GL}_p(K)$ which satisfies (1.01)–(1.03). Furthermore, the map $\sigma \to \pi(\sigma)$ is injective, and if L is a field over which K is galois, then the map $\sigma \to \pi(\sigma)$ commutes with $\Gamma_{K/L}$.

We then prove

Theorem 1.2. Suppose Assumption 1.1 holds for all extensions K/F. Then, given any irreducible p-dimensional representation σ of W_F , there exists an irreducible supercuspidal representation $\pi(\sigma)$ of $\mathrm{GL}_p(F)$ satisfying (1.01) — -(1.03).

We proceed as follows (proofs will be provided elsewhere).

DEFINITION 1.3. Call a galois extension K/F a good extension of F, either if $\Gamma_{K/F}$ is cyclic and either $[K:F] \mid p-1$ or $[K:F] \mid p+1$, or if $\Gamma_{K/F}$ is a generalized quaternion group and $[K:F] \mid 2(p+1)$.

PROPOSITION 1.4. Let K/F be a good extension. Then there is a map $lift_{K/F}$ which maps irreducible supercuspidal representations of $GL_p(F)$ to irreducible supercuspidal representations of $GL_p(K)$ and has the following properties:

- (1.4.1) If π is an irreducible supercuspidal representation of F, then lift $_{K/F}\pi$ is fixed under $\Gamma_{K/F}$;
- $(1.4.2) \; \epsilon(\mathrm{lift}_{K/F}\pi, \psi \circ \mathrm{tr}_{K/F}) = [\epsilon(\pi, \psi)]^{[K:F]} \lambda_{K/F}^{-p} \cdot \delta(\pi), \; where \; \lambda_{K/F} \; is \; the \; Langlands \; constant \; associated \; to \; K/F \; and \; \delta(\pi) = \pm 1;$
- (1.4.3) $\operatorname{lift}_{K/F}(\pi \otimes \chi) = \operatorname{lift}_{K/F}(\pi) \otimes \chi \circ N_{K/F}$ for any quasi-character χ of F^x ;
- (1.4.4) Let π_K be an irreducible supercuspidal representation of K which is fixed under $\Gamma_{K/F}$ and let $\omega(\pi_K)$ be its central character. Then if ω is a quasicharacter of F for which $\omega_K = \omega \circ N_{K/F}$, there is exactly one irreducible supercuspidal representation π of $\mathrm{GL}_p(F)$ for which $\omega(\pi) = \omega$ and $\mathrm{lift}_{K/F}\pi = \pi_K$.

PROPOSITION 1.5. Let σ be an irreducible p-dimensional representation of Γ_F . Then there is a good extension K/F, a cyclic extension E/F and a quasi-character θ of E^x such that $\sigma\mid_{W_K}=\operatorname{Ind}_{W_E\uparrow W_K}\theta$. Furthermore,

$$\epsilon(\sigma\mid_{W_K},\psi_{K/F}) = [\epsilon(\sigma,\psi)]^{[K:F]} \lambda_{K/F}^{-p} \delta(\sigma), \qquad \text{where } \delta(\sigma) = \pm 1.$$

PROPOSITION 1.6. With notation as above, and assuming 1.1, define the representation $\pi(\sigma)$ of $\mathrm{GL}_p(F)$ by the conditions $\mathrm{lift}_{K/F}\pi(\sigma) = \pi(\sigma|_{W_K})$, $\omega(\pi(\sigma)) = \det \sigma$. Then $\epsilon(\pi(\sigma), \psi) = \xi \epsilon(\sigma, \psi)$, where ξ is a pth-power root of unity.

PROPOSITION 1.7. $\pi(\sigma)$ satisfies conditions (1.01) – (1.03). If the map $\sigma \mapsto \pi(\sigma)$ given by Assumption 1.1 has the additional property that it commutes with lift_{K/F}, then the map $\sigma \mapsto \pi(\sigma)$ constructed above is unique and injective. If all irreducible supercuspidal representations of $\mathrm{GL}_p(F)$ may be constructed by induction from open compact-modulo center subgroups (see [C]), then the map $\sigma \mapsto \pi(\sigma)$ is a bijection of the set of equivalence classes of irreducible p-dimensional representations of W(F) with the set of equivalence classes of irreducible supercuspidal representations of $\mathrm{GL}_p(F)$ (see also [Ko]).

REFERENCES

- [C] H. Carayol, Représentations cuspidales du groupe linéaire, preprint, Univ. of Paris VII, 1982.
- [D] P. Deligne, Les constantes des equations fonctionelles des fonctions L, Lecture Notes in Math., vol. 349, Springer-Verlag, 1973, pp. 501-597.
- [GJ] R. Godement and H. Jacquet, Zeta functions of simple algebras, Lecture Notes in Math., vol. 260, Springer-Verlag, 1972.
- [He] G. Henniart, La conjecture de Langlands locale pour GL(3), Inst. Hautes Étude Sci. notes, 1982.
- [Ho] R. Howe, Tamely ramified supercuspidal representations of $GL_n(F)$, Pacific J. Math. 73 (1977), 437-460.
- [JL] H. Jacquet and R. P. Langlands, Automorphic forms on GL(2), Lecture Notes in Math., vol. 114, Springer-Verlag, 1970.
- [JPS] H. Jacquet, I. Piatetski-Shapiro and J. A. Shalika, Automorphic forms on GL(3), Ann. of Math. (2) 109 (1979), 169-258.
- [K] P. Kutzko, The Langlands conjecture for GL₂ of a local field, Ann. of Math. (2) 112 (1980), 381-412.
- [Ko] H. Koch, On the local Langlands conjecture for central division algebras of index p, Invent. Math. 62 (1980), 243-268.
- [M] Allen Moy, Local constants and the tame Langlands correspondence, Thesis, Univ. of Chicago, 1982.
- [S] J. P. Serre, Corps Locaux, Hermann, Paris, 1968.
- [Z] A. V. Zelevinsky, Induced representations of reductive p-adic groups, Ann. Sci. École Norm. Sup. 13 (1980), 165–210.

MATHEMATICAL SCIENCES DIVISION, UNIVERSITY OF IOWA, IOWA CITY, IOWA 52242

DEPARTMENT OF MATHEMATICS, YALE UNIVERSITY, NEW HAVEN, CONNECTICUT 06457