
BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 9, Number 2, September 1983 

ENTROPIES AND FACTORIZATIONS 
OF TOPOLOGICAL MARKOV SHIFTS 

BY D. A. LIND1 

1. Markov shift entropies. Let A be a nonnegative integral matrix. A 
well-known construction [7] associates to A a homeomorphism G A of a totally 
disconnected compact space called a topological Markov shift, or subshift of 
finite type. Such Markov shifts play a central role in topological dynamics (see 
[3]), the investigation of Smale's Axiom A diffeomorphisms [6], and coding 
theory [1]. We announce here a characterization of the possible values for 
the topological entropy of such Markov shifts, answering a question raised in 
[2]. Furthermore, these values possess an arithmetic structure which, together 
with the isomorphism theorem of Adler and Marcus [2], yields an analogue 
of prime factorization for Markov shifts up to almost topological conjugacy. 
Details and applications of these results will appear elsewhere. 

We shall always assume A to be aperiodic, i.e. some power of A is strictly 
positive. The topological entropy of a A is logX, where X is the spectral radius 
of A [5]. Perron-Frobenius theory [4] shows that X must be an algebraic integer 
> 1 whose other conjugates have absolute value < X. Call an algebraic integer 
with these properties a Perron number. Our principal result shows these are 
the only restrictions on Markov shift entropies. 

THEOREM 1. If \ is a Perron number, then there is a nonnegative aperiodic 
integral matrix whose spectral radius is X. 

SKETCH OF PROOF. If X is Perron, let B be the dx d companion matrix of 
the minimal polynomial over Q of X. The main difficulty occurs when B has 
no invariant d-sided cones, e.g. when tr B < 0. This is overcome by finding 
invariant surfaces for B curved towards the dominant eigendirection. 

The real Jordan form for B decomposes Rd into direct sum of the 1-
dimensional dominant eigenspace D = Rw for X, a collection £ — {E} of 1- or 
2-dimensional eigenspaces with ||J3x|| = ^E\\X\\(X E E) for constants 7s > 1? 
and another collection 7 = {F} of eigenspaces with \\Bx\\ = 7jr||x||(x E F), 
IF < 1. If G = D, E, or F, let TTQ be the B-equivariant projection from Rd to 
G. We will use TTD ' Rd —• R = D normalized by TTDW = 1. Put TTC = I — KD-

Fix 0 > 0, and put 

Ke = {x e Rd : irDx > 0||7rcx||}, K$(r) = {xeKe : irDx < r}. 
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For sufficiently large r, the semigroup generated by KQ{T) PI Zd contains K^e n 
Zd. Define 0: © £ £ - > £ > b y 

/ç^)=(çii^iilogX/log^) 

The graph of </> is ü?-invariant and bowl-shaped since log X/log 7^ > 1. Choose 
£,77 > 0 so that 

(1) K9(r) C x G R d : max||7rFx|| < £, 7rD</>( ^ V ^ x < r/7rDx > = Q. 

To construct a nonnegative aperiodic integral matrix A with spectral radius 
X, consider r = {z G Q O Zd : 7i-£>z < 5} = {^ : 1 < j < n}, where s is chosen 
large enough for (ii) below. Write 

(2) JLjZi — y ^ &ijZj 

with aij E Z + using these rules: (i) if ITDZÏ < s/\, then Bz% = Zj0 G T and 
let aij = 6jj0; (ii) if s/X < TTDZÏ < s, then Bzi — Zi G 1̂ 20? and therefore is a 
nonnegative integral combination of elements of Ko(r) n Zd c T and then the 
a^ can be chosen with au>\. This yields A = [a^]. If A is reducible, replace 
A by an irreducible component [4] keeping the same notation. Condition (ii) 
forces tr A > 0, so A is aperiodic. Using Perron-Probenius theory, it can be 
shown that A has spectral radius X. 

2. An example. Given a Perron number X, this proof provides an algorithm 
for computing a nonnegative aperiodic integral matrix A with spectral radius 
X. When X has negative trace, the dimension of A must be strictly larger than 
the degree of X. For example, the Perron root X ~ 3.8916 of t3 + 3£2 - 15t-46 
has conjugates X2 = —3.2142, X3 = —3.6775 and trace —3. Using rj = 1/10 in 
(1), Q was searched for a collection T of lattice points obeying (2). Such a T 
with 10 points was found, giving 
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The characteristic polynomial of A factors over Q as 

(t + 1) X {t3 + St2 - 15t - 46)(t6 - 4t5 - 4t4 + 27t3 - 6t2 - 50t + 24). 

The roots of the degree 6 irreducible factor are about 0.5134,-1.8277 4; 
0.164Ü, 1.9689+ 0.6751Î, and 3.2042, so the spectral radius of A is indeed 
X. 

3. An arithmetic for Perron numbers. Let P denote the set of Perron 
numbers. Then P is closed under addition and multiplication. If K is a finite 
extension field of Q, it can be shown that K OP is a discrete subset of [1,oo). 

Call X G P indecomposable if it cannot be written as a/3 with a,/? G P. 
Thus 2 is indecomposable; for if 2 = a(3 with a, ft £ Z, then a conjugate 
Pi = 2/ai of p would have \pi\ = 2/|a;| > 2/a = /?, contradicting p £ P. A 
modification due to M. Boyle of this argument proves the following. 

PROPOSITION. Let\ = aPeP with a,peP. Then a,Pe Q(X). 

Since Q(X) n P is discrete, it follows that X can be factored into indécom­
posables, but in only finitely many ways. The Perron factorization of a ra­
tional integer coincides with its usual prime factorization, and is unique by the 
Proposition. Unfortunately, nonuniqueness can occur, as in (a + 2)2 = 5a2, 
where a — (1 + v/5)/2, and each factor is indecomposable. 

4. Factorizations of topological Markov shifts. Adler and Marcus [2] in­
troduced the notion of almost topological conjugacy, and proved that two 
aperiodic Markov shifts with the same entropy are almost topologically con­
jugate. Together with Theorem 1, this proves the following. 

THEOREM 2. Let a be an aperiodic topological Markov shift with entropy 
logX. Then up to almost topological conjugacy, there is a one-to-one correspon­
dence between factorizations a — o~\ X • • • X <rn of a into a direct product of 
aperiodic Markov shifts and Perron factorizations X = Xi X • • • X Xn of \, where 
\j: G P. In particular, the number of such factorizations is finite. 

COROLLARY 1. Let a be as in Theorem 2, and assume further that X is 
indecomposable. Then o is not even almost topologically conjugate to a direct 
product of nontrivial aperiodic Markov shifts. 

Since direct factors of Markov shifts must be sofic, and sofic entropies 
coincide with Markov shift entropies, we also obtain the following. 

COROLLARY 2. Let p be a rational prime. The full p-shift cannot be factored 
into the direct product of homeomorphisms of nontrivial compact spaces. 
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