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Every great physical theory is characterized by one or several universal 
constants: special relativity gave us c, the speed of light, as a fundamental 
invariant, quantum mechanics go into effect when actions are comparable to 
Planck's constant h, and the gravitational constant G enters Newtonian 
mechanics in the law of gravitational attraction as well as in the general theory 
of relativity as a coefficient to the source of curvature of space-time. The 
general theory of relativity is actually even more remarkable in that it com­
bines G and c into the formula (Einstein's equations) thereby in principle 
predicting the behaviour of a system of planets, lightwaves and galaxies. What 
we don't have is a physical theory which unifies G, c and h into one physical 
law, i.e. we don't have a quantum theory of gravity. 

As is well known, there is a (c, h)-theory, namely relativistic quantum field 
theory with 11-digit predictive power in the case of interactions between 
photons and electrons. Albeit elusive as a mathematically well defined theory, 
certain ad-hoc renormalization and perturbation techniques do work in these 
special cases. 

From a physical point of view, quantum gravity, i.e. some (G, c, /j)-theory, 
must go into effect at high densities of light and matter with the intuitive effect 
of dividing the space-time manifold into discrete little chunks of space and 
time. 

Already Planck (1899) pointed out, that from G, c and h one can derive 
canonical units for length, time and mass, namely 

lP = (hG/c3)l/2 = 1.616 X 10_33cm, 

tP = (hG/c5)V2 = 5.391 X KT^sec, 

mP = (hc/G)V2 = 2.177 X 10"5g. 

In the delightful book [8] one finds the remark that the Planck length lP is 
the general limit on the accuracy of position measurements, simply because for 
a particle of mass m, we cannot localize it with an error less than the 
Schwartzschild radius IGm/c1 (the size of the black hole corresponding to 
m); at the same time, from the Heisenberg uncertainly principle, this error is 
always bigger than h/mc. Equating 

2Gm/c2 = h/mc 
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we get 2m2 = m\ and the corresponding limit on the position error 

h/{hc/2G)l/2 = 2x/2lP. 

Similarly quantum gravity effects turn up when the time and mass scales of 
the processes to be studied are near the Planck values (such as in the early 
history of a big bang). 

The book under review represents the efforts of one of the schools within 
axiomatic quantum field theory over the last decade to create a (G, c, h)-
theory. A completely viable (and presumably spectacular) theory has yet to be 
found in the future, and even the present attempts are ill-defined and specula­
tive as seen from a mathematical point of view. But they represent intriguing 
physical ideas and introduce even more theories such as the incorporation of 
thermodynamics. Recall here the Planck expression for the energy density 
distribution as a function of the frequency co, 

(1) f(a)du 
7T2c3[exp(hù)/kT) - 1] 

for photons at equilibrium inside a box of absolute temperature T (k is 
Boltzmann's constant). (1) is called a black-body spectrum, and radiation 
similar to that escaping from such a box (through a small hole) is called 
thermal radiation. One of the cornerstones of the theory developed in this book 
is a computation due to Hawking [5] predicting thermal radiation emitted from 
a quantum black hole. Indeed, it has become a generally believed principle that 
the introduction of nonzero curvature in space-time results in particle produc­
tion. It is this mechanism that the authors elucidate involving on one hand the 
quantum theory of fields, characterized by particle numbers being a noncon-
stant observable, and on the other differential geometry of curved space-time, 
in particular the classical Einstein equations. 

Rather than going into the author's actual physical arguments and computa­
tions, it would perhaps be worthwhile to look briefly at the two basic concepts 
underlying most of the book: (a) Boguliubov transformations and (b) semi-
classical Einstein equations. 

(a) Consider the axiomatic (nonconstructive) description of the Klein-Gordon 
field in Minkowski space-time with the usual linear coordinates x = (f,x) = 
(t, Xj, x29 x3). We start from the classical wave equation 

a2 a2 a2 a2 

(2) isî-s»-M-«+"2r'-,o=o 

with the positive frequency modes 

(3) uk(t,x) = ((o(27r)3)~1/2exp[/(k-x - cot)] 

where k x = kxxx 4- k2x2 + k3x3 and co = ( k k + m2)1 / 2 . These form an 
"orthonormal basis" (you'll get your mathematical feathers a little ruffled in 
this) for the one-particle Hubert space H with the complex inner product 

(4) (+.,*,)= - i / * . ^ 
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(integration over a hyperplane / = constant; this is independent of t due to 
(2)). H may also, via Fourier transform, be realized as L1 of one sheet of the 
mass-hyperboloid k\ — k • k = m2 with the Lorentz-invariant measure co~ W3k. 
We have formally 

(uk ) «k,) = 5(k - k') 
where the right-hand side is the 3-dimensional Dirac function. The quantized 
field observable <p is a distribution on Minkowski space with values in the 
space of selfadjoint operators on a Hilbert space K, the state space of the 
quantized field. <p is the quantum analogue of the real part of the classical field, 
and its initial conditions are expressed as a pair of canonical commutation 
relations (generalized Heisenberg relations), formally 

[<p(t,x),<p(t,x')] = 0, 

£<..•>.$(..*) 
9(f,x),-jf(/,x') 

= 0, 

= iS(x - x ' ) , 

for all t9 x, x'. If we expand 

(5) cp(t9 x) = ƒ (a(k) uk(t9 x) + a(k)*uk(t, x))d"k 

we get the commutation relations expressed as 

( [a(k)9a(k')]=[a(k)*9a(k')*]=0, 

[a(k)9 «(k')*] = fi(k - k'), 
where a(k)* is the adjoint operator to a(k). On the vacuum state vector 
] 0) G K we have a(k) | 0) = 0, and the a(k)* ("creation operators") generate 
the "orthonormal basis" 

|kj"k2> • • • k;>> = [(»,)!• • • («,.)!]- , /2(ö(k,)*r • • • (a(k,)*)"'|o> 
a so-called state with nx particles having momentum kX9 n2 having k2, etc. All 
this can be made rigorous (constructive) [1, 11] using the fact that one may 
integrate distributions against test functions to produce numbers. In particular, 
K may be realized [12] as the space of holomorphic functions on H9 square-
integrable with respect to a Gaussian measure, and there is a well-defined 
Hamiltonian (energy operator) corresponding to the formal (and divergent) 

* < ' > = Î / ( S ) ' + ( & ) , + ( & F + ( & ) , + " V 

(integration over t — const). Also there is a so-called Weyl system W consisting 
of a strongly continuous map W: H -> U(K) (the unitary operators on K) 
satisfying 
(7) W(z)W(z') = exp(/Im(z, z')/2)W(z + z') 
and a vector | 0) G K (the constant function on H) such that for all 5 G U(H) 
there is a 2 G U(K) with 2 | 0> = | 0> and 

(8) 2JT(z)2* = W(Sz) 
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for all z,z' E H, (7) represents the relations (6) in integrated form, namely for 
z = \p(t9 x) we have formally 

W{z) = «p[/ /(<p(*,x)/(x) + ^ ( / , x ) g ( x ) ) rf3x] 

where ( ƒ, g) is the real initial data 

/(x) = !(*(0,x)+£(0,x)), 

,(x)=I(f(0,x) + f(0(x)). 
If ( ƒ ', g') similarly is the initial data for z' = *//(*>x) tnen w e n a v e 

ƒ( / ' (x )g(x) - / (x )g ' (x ) ) rf3x = Im(z, z') 

which identifies the canonical time-invariant symplectic form on the space L of 
real initial data (the classical phase space) with the imaginary part of the 
complex inner product on H. Thus in our simple example the field quantiza­
tion consists in the "algebraic aspect" (6) and (7)—essentially representation 
theory of infinite-dimensional Heisenberg groups—and in the "probabilistic 
aspect" of finding | 0), see [13]. Note that the existence of a complex structure 
on L is crucial for the existence of | 0), here related to the existence of a set of 
positive frequency modes (3). In general space-times we no longer have a nice 
Fourier transform and plane waves, so there one must study the geometry of 
certain vector fields similar to 8/3/ [2, 3] and Green's functions [7]. Another 
possibility is to explore the geometry of the complexification of the space-time: 
the modes (3) correspond to holomorphic functions in the tube domain 
(7(2,2)/U(2) X U(2). Of course, there may be no vacuum, e.g. if m2 < 0 above 
(tachyons). 

There are actually several ways of looking (guessing) at the "quantization" 
of a general (interacting, nonlinear) classical physical system with infinitely 
many degrees of freedom, in the example above a scalar Klein-Gordon field. 
The Hamiltonian approach [4, 6] looks for the generator of the time evolution 
as a selfadjoint operator on a Hubert space similar to K above, usually by 
successive approximations ("cutoffs"). For Klein-Gordon the time evolution is 
simply given in H as multiplication by exp( — iut) with a natural induced 
action on the holomorphic functions on H. The functional approach has its 
roots in the calculus of variations and oscillatory integrals. The object here is 
to compute the vacuum expectation values (B(<p))= (0\B((p)\Q) of func­
tional (field observables) B = B(\p) and the formula is 

(9) (B(<p)) = fB(t)cxp(iA(4>))dM 

where d[\p] is some measure on the space of all classical configurations 
\p = \p(x) of the field. Here A is the classical action (for Klein-Gordon 
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over all of space-time). Finally, there is the C*-algebraic approach [13] and 
related to it the point of view [9] (as in (7) and (8)) that field quantization 
primarily associates unitary operators on the quantum field Hubert space to 
symplectic isomorphisms of the classical phase space. 

This is exactly where Boguliubov transformations come in, both as an 
important concept in the rigorous discussion of quantum fields, and as a device 
for particle production in concrete nonrigorous models of particles in curved 
space. Returning to fields of the form (5) and (6), suppose there was an 
alternative set of positive frequency modes (3), say vk with which to decom­
pose the field 

<p(x) = f(b(k)vk(x) + b(k)*vk(x)) d3k 

where x is a variable on the space-time manifold. Correspondingly, there 
would be a new vacuum | 0 / with b(k) | 0) ' = 0 but a(k) | 0) ' ¥= 0 in general, 
so that the | 0) ' vacuum actually contains particles from the uk modes. This is 
the mechanism for the celebrated particle production, including thermal radia­
tion (1) from a black hole. The change of basis from the uk modes (typically 
"ingoing" in a scattering situation) to the vk modes ("outgoing") is called a 
Boguliubov transformation S. Expressing 

»k(*) = f(a(k9k')uk.(x) + j8(k ,k ' )M*)) d'k' 

combined with the orthogonality relations for the two sets of modes, we get on 
the diagonal in H ® H (setting (i7, v) = —(v,u)) 

S = I -r — J (transpose), 

with a and P viewed as integral operators. Here 

Pa' -aP' = 0 PP* ~ aa* = - 1 , 

which means that SJS' = J where 

" ( Î "o')-
Therefore, S can be thought of as a symplectic isomorphism of the one-particle 
Hubert space //, i.e. Im(Sz, Sz') — Im(z, z') (z, z' E H). Clearly, S preserves 
the relations (7) in that W\z) = W(Sz) again satisfies them, but it is only 
unitarily implementable as in (8) provided [S, /'] is a Hilbert-Schmidt operator 
[14]. If S is unitary, there will be no particle production, and while the 
algebraic aspects of the quantum fields are invariant under Boguliubov trans­
formations, the vacuum and with it the probabilistic aspects (and in particular 
getting numbers out of the theory) need not be. But as we saw, only special 
wave equations on special space-time manifolds will allow the splitting of fields 
into positive and negative frequencies. Also note that such an existence of 
positive modes analogous to (3) and hence a vacuum is related to the stability 
properties of the equation [9]. 
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(b) Difficult as it may be mathematically to understand the practice of 
renormalization in quantum electrodynamics (QED), quantization of gravity 
presents even bigger problems. For one thing, Einstein's equations 

(io) *„, - ̂ v + A v = -^pk, 
are nonlinear in the metric tensor g , and the coupling constant G is not 
dimensionless as in QED. A semiclassical theory is therefore invented by 
keeping the left-hand side of (10) as it is, a function of g and its derivatives, 
and replacing the right-hand side by its vacuum expectation value as in (9), 

(11) R„-\Rg„ + Kg„=- S«£ (r„). 

T^v is the stress-energy-momentum tensor of the quantized matter field <p 
(quadratic in <p and its derivatives), acting as a source of gravity. 

A major part of the book deals with the renormalization of (T^) which 
contains divergences like F(x9 x) where F(x, y) = (x — y)~~a, a > 0. A first-
order quantum gravity is erected by allowing quantum fluctuations e in the 
classical background space-time g—after all, gravitational radiation is an 
observational fact [15]—and then treating e as part of the right-hand side of 
(11). This marks the present frontier of the subject, very far indeed from the 
realm of rigorous mathematics (and experimental verification). But here one 
finds an intriguing blend of intuitive notions of space, time, particles, energy, 
temperature, entropy, etc. Recently, however, a different line of attack has 
been initiated using the gauge theory approach to gravity. Here you try to 
evaluate functional integrals as in (9) by saddle point methods around instan-
tons (metrics stationary for the action) [10]. 

This book is not a textbook. Rather, (page vii) "we have attempted to collect 
and unify the vast number of papers that have contributed to the rapid 
development of this area" in recent years. It reports many computations of 
Green's functions and singular integrals for fields in concrete space-times 
(Robertson-Walker, Rindler) and has good sections on the relevant aspects of 
differential geometry, such as conformai differential geometry. Here you'll also 
see (or more often, get a reference) how infinities get absorbed, e.g. by 
renormalizing physical quantities such as energy, mass, charge, wavefunction, 
gravitational constant G or cosmological constant A. Unfortunately, the book 
gives almost no references to the purely mathematical literature, which how­
ever reflects well the fact that in this area physics and mathematics have grown 
apart (or one ahead of the other). 

One might say that we are witnessing the solution of equations whose 
left-hand side belongs to the mathematics of the 19th and 20th century 
(differential geometry of Lorentz manifolds, conformally invariant equations), 
but whose right-hand side is of the 21st or 22nd century. Hopefully by then 
some constructive theory will exist for interacting quantum fields in 4 space-time 
dimensions, including G, c and h, a theory which properly dequantizes into 
present-day classical wave equations. Perhaps, as suggested by Yu. I. Manin 
[8], we are still living with some WKB-type approximation to a "true" 
infinite-dimensional complex quantum World? 
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The author is one of the foremost expositors (see, for example, the more 
comprehensive book Amrein, Jauch and Sinha [1]) of the scattering theory of 
Schrödinger operators and the present introductory book is a welcome addi­
tion. I use the term introductory here purposely but with two qualifications. 

First, as the author states, the book is in the spirit of an essay on the 
so-called time-dependent methods as viable alternatives to the more ponderous 
time-independent methods. Moreover, after some perusal, one sees that the 
main thrust of the book is to present a treatment of some of the very most 
recent research results in the time-dependent potential scattering theory. These 
go under the name "geometric" methods. They have emerged only recently in 
the pioneering work of V. Enss [2] (see also Enss [3, 4]), and have been 


