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There are many excellent texts on the representation-theory of finite groups, 
e.g. [21] for the 'ordinary' theory (over fields of characteristic 0) and 
[6, 8, 14, 39], for the modular theory. The representation-theory of the 
symmetric groups Sn cannot, at present, be considered merely a specialization 
of the more general theory; there is a rich accumulation of concepts and 
theorems in the theory of Sn, whose analogs for arbitrary finite groups do not 
exist (or have not yet been found). The results of this special theory, not only 
have an intrinsic interest and beauty, but have applications in chemistry, 
physics and areas of mathematics as diverse as algebraic geometry (via flag 
manifolds, determinantal varieties and the Schubert calculus), classical in­
variant theory, rings with polynomial identity, multivariate statistics (through 
the work of A. T. James—not an author of the text under review!—and many 
followers; cf. [13, Chapters 12 and 13]) and, of course, combinatorics (in 
particular, via the Robinson-Schensted correspondence and the Redfield-Pólya 
enumeration-theory). 

Two quite different approaches have given rise to most of this theory of Sn: 
On the one hand, Frobenius determined the character-table of Sn utilizing 

certain symmetric polynomials (then called 'bi-alternants', now usually called 
'Schur functions' or '^-functions') and their known properties (which had been 
intensively investigated by Jacobi and others in the mid-nineteenth century). 
His student, Schur, extended this work, using it in his thesis to study the 
representation-theory of GL(n). This approach studies the representations of 
Sn in terms of their characters, and in the context of the theory of symmetric 
polynomials. 

On the other hand, Alfred Young, in his work on classical invariant theory, 
was led to study what he called 'Quantitative Substitutional Analysis' (the 
common title of the brilliant series of nine papers where he developed this 
approach to invariant- and representation-theory; cf. [51]); this theory involves 
many fundamental constructions, of which the best-known are the Young 
standard tableaux and the Young idempotents. Young's presentation is very 
condensed, and a small portion of his work has been popularized in Ruther­
ford [43]; the bulk of Young's profound work has not yet been fully under­
stood, in the reviewer's opinion. As developed also by Specht [45] and Garnir 
[16], this second approach deals with representations of Sn by constructing 
explicit Sn-modules, rather than dealing primarily with the associated char­
acters. 

(To do full justice to the role played by GL(n) in the theory of Sn, which 
cannot be done in this review, would require discussion of a third important 
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approach to these matters, based on Lie-algebraic techniques. Cf. also [5, 7, 9, 
19, 20, 25, 48, 49, and 52] for yet other approaches, based on À-rings, 
Hopf-algebraic techniques, shape-algebras, TurnbulPs double standard 
tableaux, etc; it remains to be seen which (if any) of these more recent 
viewpoints will lead to significant new results.) 

The text under review is one of a number of current successors to Robinson's 
classic path-breaking text, Representation theory of the symmetric group [42]. 
The James-Kerber text has an introduction by Robinson, in which he courte­
ously praises the merits of their modern treatment (in particular acknowledg­
ing that the Decomposition Matrix tables in the James-Kerber text correct 
some errors in the corresponding tables in the earlier text) and wishes them 
luck in the further development of the subject. The text also benefits, as James 
and Kerber mention in their preface, from conversations with Robinson during 
extensive visits by the authors to the University of Toronto. The text has yet 
another brief but interesting foreword by P. M. Cohn. 

Chapter 1 of the James-Kerber text is devoted to a preliminary exposition of 
the point of view which they use to present later material. A reader familiar 
with some basic representation-theory of finite groups (e.g., induced represen­
tations and Mackey's intertwining theorem) should have no excessive difficulty 
in following this material; a reader working in some other field than group-
theory, but wishing to learn about representations of Sn, might do well to study 
[26], and perhaps look at [2 and 29], before tackling the present text. The text 
gets down to business in Chapter 2, which contains a wealth of classical results, 
many presented in a novel manner. Chapter 3 deals with a selected portion of 
Young's work; the treatment here does not differ significantly from that in 
Rutherford [43] and Boerner [2]. 

Reasons of space forbid a description of the many topics covered in Chapter 
2 alone; however, the content of §2.8, the celebrated Littlewood-Richardson 
Rule, demands some discussion, if only because of its remarkable history. 

Like many results in the theory, the Littlewood-Richardson Rule expresses 
the dimension of a space of interest in representation-theory, in terms of the 
number of ways of solving some combinatorial problem involving Young 
tableaux. It is perhaps best understood in the context of representations of the 
general linear group: 

Let £ be a finite-dimensional vector-space over a field of characteristic 0, 
and let A a E, A ^ E denote representation-spaces for the irreducible represen­
tations of GL(E) associated with partitions a and fi. It is natural to ask how 
the tensor-product A a E ® A ^ E of these two irreducible representations 
decomposes as a direct sum of irreducible GL(£)-modules. The Littlewood-
Richardson Rule answers this question, at least in the weak sense of giving the 
multiplicity with which any A y E occurs in this decomposition: this number 
turns out to be the number of ways to construct the Young frame for y out of 
those for a and /?, in accordance with some peculiar requirements. 

Littlewood and Richardson [30] observed this pattern empirically in 1934, 
but were unable to prove it. Robinson [40] in 1938 showed that the proof may 
be reduced to the construction of a bijection between two very complicated 
finite sets, and gave a remarkable rule for constructing such a bijection. 
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Robinson's construction includes, as a special case, the Robinson-Schensted 
correspondence (rediscovered by Schensted [44] in 1961) which has since been 
the object of much study. Robinson's argument was elaborated by Littlewood 
in [29, §6.3]. It seems that for a long time the entire body of experts in the field 
was convinced by these proofs; at any rate it was not until 1976 that 
McConnell [32] pointed out a subtle ambiguity in part of the construction 
underlying the argument. A large number of complete proofs which appear to 
avoid this ambiguity has since been published; the earliest (at least in pub­
lished form) being those of Thomas ([46], utilizing ideas of Schütgenberger) 
and James [22, §16] while later complete proofs have been published by (at 
least) Baclawski [1], Clausen [5], Macdonald [31], Zelevinsky [52] and the 
present text. (In addition, three doctoral theses contain new proofs: that of 
Beetham at Oxford (which pre-dates James' and Thomas' proof), Wagner at 
Aachen (whose proof is presented in the James-Kerber text) and Weyman at 
Brandeis). The bulk of these proofs utilize, either the Robinson-Schensted 
correspondence, or (as in the James-Kerber text) Robinson's construction 
(related to Young, QSA VIII, §111) of characters associated to skew partitions. 
Thus, the Littlewood-Richardson Rule seems finally to have been firmly 
established, by methods based on ideas of Robinson. 

How was it possible for an incorrect proof of such a central result in the 
theory of Sn to have been accepted for close to forty years? The level of rigor 
customary among mathematicians when a combinatorial argument is required, 
is (probably quite rightly) of the nonpedantic hand-waving kind; perhaps one 
lesson to be drawn is that a higher degree of care will be needed in dealing with 
such combinatorial complexities as occur in the present level of development of 
Young's approach. 

These observations should not be taken as depreciating the intuitions, used 
to obtain the brilliant results of the earlier period in the subject. Indeed, these 
earlier feats of pattern-recognition may be better appreciated by turning, as we 
next shall, to some of the open questions in the field. 

The James-Kerber text contains tables (constructed by A. Golembiowski) for 
the direct-sum decomposition into irreducibles of the tensor-product of two 
ordinary irreducible representations of Sn. Surely these also must exhibit some 
pattern, as in the case of GL(n)l Perhaps so; but if there is some underlying 
pattern, we may require some future Littlewood, Richardson and Robinson to 
bring order out of the chaos of these tables. (This problem is equivalent to that 
of expressing Sn(Ex ® E2 ® E3) as a direct sum of terms Aa'E® Aa2E® 
A tt3 E, analogously to the well-known direct-sum decomposition 

Sn(E®F) = 0 AaE® AaF; 
at- n 

the reviewer is indebted to R. Stanley for this observation.) 
The problem just mentioned (cf. discussion in §2.9 of the text) is one of three 

major open questions in the theory of Sn9 the other two being the plethysm 
problem and the decomposition matrix problem. The curiously named plethysm 
problem asks for the direct-sum decomposition of A a( A ^E) into irreducible 
GL(E)-modules (in characteristic 0, a and /? being any partitions). (It has an 
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equivalent formulation in terms of S„-modules and wreath-products, given in 
§5.4 of the James-Kerber text; the above formulation, in terms of composites 
of shape-functors A a, is closer to Littlewood's original version [27].) Only a 
few isolated results on this problem are known, e.g., Thrall's [47] beautiful 
decomposition of Sn(S2E) as the direct sum of all A""*1*"2'02'""""0* with 
a , , . . . ,a j a partition of n (which forms the starting-point of the statistical 
investigations of A. D. James referred to earlier) (cf. also the tables of 
plethysms in [10]). 

The special case of the plethysm problem which asks for the direct-sum 
decomposition of Sm(SnE) is related to (still open) questions of nineteenth-
century invariant-theory (cf. [15, 28]). 

The decomposition matrix problem will be discussed below; it resembles the 
two preceding problems in asking for the fundamental laws underlying a body 
of 'experimental data'. One invaluable feature of the James-Kerber text, is that 
a vast body of 'experimental data' on Sn is assembled, in Appendix I, in the 
form of 110 pages of tables. 

Chapter 4 of the James-Kerber text discusses the representation-theory of 
wreath-products, and Chapter 5 presents some applications of this theory; 
these two chapters essentially cover the material in Kerber's earlier text [23]. 
Among the most interesting applications discussed in Chapter 5 may be 
mentioned: the Redfield-Pólya enumeration theory, results on the plethysm 
problem and some results of Frobenius on the character-tables of the Mathieu 
groups. (All these results had earlier been obtained by methods not explicitly 
involving wreath-products, but it is illuminating to see them presented in this 
new context.) Chapter 5 also presents some more novel applications of 
wreath-products, involving operations called ' symmetrization' and 'permutri-
zation' on representations of finite groups. 

With the development of modular representation theory in the late 1930s, a 
new theme arose in the representation-theory of Sn: the problem of explicitly 
computing for Sn the various general concepts (/^-blocks, decomposition 
matrices, etc.) of the modular theory. Chapter 6 of the text deals with this 
material. 

A beautiful explicit description of the/7-blocks for Sn, in a form involving 
Young frames, was conjectured by Nakayama [34] in 1940, and proved by 
Brauer and Robinson in 1947 [3 and 41]; a modern proof is given in §6.1 of the 
present text. 

By contrast, the evaluation of the decomposition matrices for Sn remains a 
major open question, despite many ingenious attacks on this problem. The 
pioneeering work of Robinson on this question is explained in his text [42]; 
like later work on the problem by Osima, Farahat, Kerber et al., it deals only 
with characters and/or isomorphism-classes of S^-modules. The introduction 
of Specht modules into the question by Peel (in his thesis [35]; cf. [38]) led to 
an important break-through in the study of decomposition matrices of Sn (cf. 
[11, 12, 24, 36, 37]), and this new method has been extensively developed by 
both James and Kerber. 

§6.3 of the James-Kerber text is a lucid exposition of the current state of the 
decomposition matrix problem for Sn. Much of this material is the work of the 
authors, and this section is, in a sense, the high point of the text. 
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The concluding two sections of the text are devoted to the Young approach 
(via modules rather than characters) to the representation-theory of Sn (Chapter 
7) and GL(n) (Chapter 8). The approach in both chapters is "characteristic-
free ", (a current buzz-word in the literature) i.e., the constructions and results 
work over ground-fields of any characteristic. 

We have already discussed the importance, for modular representation-the­
ory, of Peel's observation that Specht's construction of explicit representation-
modules for Sn is characteristic-free; results in (Peel, [38]) imply that Young's 
earlier construction of such modules and their bases also has this property. 
James' earlier text [22] uses these constructions (in a third, equivalent, incarna­
tion) as a basis for the theory of Sn\ in the reviewer's opinion, this approach is 
more fundamental than that in the present text. Chapter 7 of the present text 
consists of a small selection of this material from James' earlier text, together 
with an exposition of unpublished work by Murphy which sheds light on 
several mysteries at once: Young's orthogonal representation, Nakayama's 
rule, and the role played by hook-lengths. 

Chapter 8 is essentially an exposition of the important paper [4] by Carter 
and Lusztig; the Lie-algebraic material is here replaced by elementary combi­
natorial constructions, thus making the results accessible to readers unfamiliar 
with Chevalley bases, Kostant Z-forms and such. 

We cannot discuss here more than a small fraction of the many important 
results and concepts covered in the James-Kerber text. Nevertheless, there are 
important topics the text omits (notably the theory of Schur functions) and the 
serious student of Sn will need to consult other current texts (as well as papers); 
James [22], Macdonald [31] and Green [17] may be particularly recommended 
for supplementary reading. 

James and Kerber have, in the text under review, made accessible to the 
mathematical community a vast body of information and techniques concern­
ing the representation-theory of Sn and GL{n). Great labor and thought have 
gone into the systematization of this material. The reviewer believes the 
subject-matter of their text is at present undergoing an intensive period of 
development; the James-Kerber text should contribute substantially to the 
acceleration of this development. 
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The logic of quantum mechanics, by Enrico G. Beltrametti and Gianni Cas-
sinelli, Encyclopedia of Mathematics and its Applications, vol. 15, Addison-
Wesley, Reading, Mass., 1981, xxvi + 305 pp., $31.50. 

By their very nature, scientific theories cannot be proved. No matter how 
successful a theory has been in explaining the Universe, there always exists the 
possibility, however remote, that this particular theory is not the only one that 
can explain the given phenomena. There conceivably could exist another 
theory that could do just as well—if not better. This possibility is not as 
remote as it may seem. In the past, very few physical theories have lasted more 
than a century without being discarded or substantially modified. 

Quantum theory was brought about at the turn of the century by the failure 
of classical physics to explain the results of more accurate experiments which 
could measure atomic phenomena. The success of the theory was overwhelm­
ing, and currently its acceptance among scientists is unquestioned. In the 
beginning the theory consisted of statements concerning physical quantities, 
but later writers attempted to axiomatize it and divorce it from concepts of 


