EXISTENCE THEOREMS FOR GENERALIZED KLEIN-GORDON EQUATIONS

BY EZZAT S. NOUSSAIR AND CHARLES A. SWANSON¹

The semilinear elliptic partial differential equation

(1)
$$Lu = f(x, u), \quad x \in \Omega,$$

is to be considered in smooth unbounded domains $\Omega \subseteq \mathbb{R}^N$, $N \ge 2$, where

(2)
$$Lu = -\sum_{i,j=1}^{N} D_i[a_{ij}(x)D_ju] + b(x)u, \quad x \in \Omega,$$

 $D_i = \partial/\partial x_i, \ i = 1, \dots, N$; each $a_{ij} \in C_{loc}^{1+\alpha}(\Omega), \ b \in C_{loc}^{\alpha}(\Omega), \ 0 < \alpha < 1; \ b(x) \ge b_0 > 0$ for all $x \in \overline{\Omega}$, L is uniformly elliptic in Ω , and f(x, u) satisfies all the conditions in either list (F) or list (F') below. Our main objective is to prove the existence of a positive solution u(x) of (1) in Ω satisfying the boundary condition u(x) = 0 on $\partial\Omega$ (void if $\Omega = \mathbb{R}^N$), and to obtain asymptotic estimates as $|x| \to \infty$.

The physical importance of the Klein-Gordon prototype

(3)
$$-\Delta u + b(x)u = \delta[p(x)u^{\gamma} - q(x)u^{\beta}], \quad x \in \Omega,$$

arises in particular from nonlinear field theory; the existence of solitary waves and asymptotic behavior as $|x| \to \infty$ follow from our theorems. It is assumed in (3) that p and q are nonnegative, bounded, and locally Hölder continuous in Ω , $1 < \gamma < \beta$, and $\delta = \pm 1$. The Hypotheses (F') below are all satisfied if $\delta = +1$ and p/q is bounded and bounded away from zero in Ω . Hypotheses (F) are all satisfied if $\delta = -1$, $\beta < (N+2)/(N-2)$, $N \ge 3$, and q(x) > 0.

HYPOTHESES F (UNBOUNDED NONLINEARITY)

(f₁) $f \in C^{\alpha}_{loc}(\Omega \times R)$ and f(x,t) is locally Lipschitz continuous with respect to t for all $x \in \Omega$.

(f₂) There exist positive constants $s_i > 1$ and nonnegative, bounded continuous functions $f_i \in L^2\Omega$, i = 1, ..., I, such that

$$|f(x,t)| \leq \sum_{i=1}^{I} f_i(x)|t|^{s_i}, \quad x \in \overline{\Omega}, \ t \in R,$$

where each $s_i < (N+2)/(N-2)$ if $N \ge 3$.

(f₃) $f(x,t)/t \to +\infty$ as $t \to +\infty$ locally uniformly in Ω .

Received by the editors May 18, 1982 and, in revised form, September 3, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 35J65; Secondary 35B40.

¹Support of NSERC (Canada) is gratefully acknowledged.

^{© 1983} American Mathematical Society 0273-0979/82/0000-1201/\$01.75

(f₄) There exists a positive constant ϵ such that $(2 + \epsilon)F(x, t) \leq tf(x, t)$ for all $t \geq 0$, $x \in \Omega$, where $F(x, t) = \int_0^t f(x, \tau) d\tau$.

HYPOTHESES F' (BOUNDED NONLINEARITY)

 $(f'_1) = (f_1); (f'_2) f(x, 0) = 0$ for all $x \in \Omega$.

 (f'_3) There exists a positive number T such that f(x,t) < 0 for all t > T and for all $x \in \Omega$.

 (f'_4) There exists $x_0 \in \Omega$ and $T_0 \in [0, T)$ such that $F(x_0, T_0) > 0$.

 (f'_5) For every bounded domain $M \subset \Omega$ and for every $t_0 > 0$, there corresponds a positive constant $K = K(M, t_0)$ such that f(x, t) + Kt is a non-decreasing function of t on $0 \le t \le t_0$ for each fixed $x \in \overline{M}$.

The unbounded domain Ω in (1) is allowed to have the general form $\bigcup_{n=1}^{\infty} \Omega_n$, where $\{\Omega_n\}$ is a sequence of smooth bounded domains with $\overline{\Omega}_n \subset \overline{\Omega}_{n+1} \subset \overline{\Omega}$ for $n = 1, 2, \ldots$ For example, Ω can be an exterior domain, cylindrical or conical domain, or the entire space \mathbb{R}^N .

THEOREM 1. Suppose that Hypotheses (F) hold and that each a_{ij} and $D_i a_{ij}$ in (2) is bounded in $\Omega \cup \partial \Omega$. Then equation (1) has a positive bounded solution u(x) in Ω satisfying u(x) = 0 identically on $\partial \Omega$ such that $u(x) \to 0$ and $|\nabla u(x)| \to 0$ as $|x| \to \infty$ uniformly in Ω . In the case that $\Omega = \mathbb{R}^N$, (1) has a positive bounded solution u(x) throughout \mathbb{R}^N with this asymptotic behavior at ∞ .

Specializing to the Schrödinger operator $L = -\Delta + b(x)$, $x \in \Omega$, we prove that the positive solution u(x) in Theorem 1 satisfies

$$\overline{u}(|x|) \leq C \exp(-k|x|), \quad x \in \Omega$$

for some positive constants C and k, where $\overline{u}(t)$ denotes the spherical mean square of u(x) over the (N-1)-sphere of radius t. Sharper estimates arise in the Klein-Gordon case (3) if b(x) = b is a positive constant.

In the case of bounded nonlinearities, we consider boundary value problems of the type

(4)
$$\begin{cases} Lu = \lambda f(x, u), & x \in \Omega, \\ u(x) = 0, & x \in \partial\Omega, \end{cases}$$

in an exterior domain Ω , or in the entire space \mathbb{R}^N with the boundary condition deleted, where λ is a positive constant.

THEOREM 2. If Hypotheses (F') hold, there exists a positive number λ^* such that the boundary value problem (4) has a bounded positive solution $u(x, \lambda)$ in $\Omega \cup \partial \Omega$ for all $\lambda \geq \lambda^*$. The same is true in the case that $\Omega = \mathbb{R}^N$, where the boundary condition in (4) is now deleted.

The theorems below concern the specialization

(5)
$$\begin{cases} -\Delta u + b(x)u = \lambda f(x, u), & x \in \Omega, \\ u(x) = 0, & x \in \partial \Omega \end{cases}$$

UNIQUENESS THEOREM 3. Suppose in addition to (F') that f(x,t)/t is bounded in $\Omega \times (0,T]$ and that $f(x,t)/t \to 0$ as $t \to 0+$ for all $x \in \Omega$. Then there exists a positive number λ_* such that the only nonnegative bounded solution $u(x,\lambda)$ of (5) is identically zero in Ω for $0 < \lambda \leq \lambda_*$.

THEOREM 4. Suppose in addition to (F') that $f(x,t)/t \to 0$ as $|x| \to \infty$ uniformly in $0 < t \le T$. Then there exists $\lambda^* > 0$ such that, for all $\lambda \ge \lambda^*$, the boundary value problem (5) has a positive solution $u(x,\lambda)$ in Ω satisfying $u(x,\lambda) \le C(\lambda) \exp[-\sqrt{b_0/2}|x|]$ for some positive constant $C(\lambda)$.

We also prove analogous theorems without the uniform positivity hypothesis on b(x), e.g. b(x) can be identically zero, or even have negative values.

To prove Theorem 1, we first construct a sequence of solutions U_n of Dirichlet problems on bounded subdomains Ω_n of Ω , $n = 1, 2, \ldots$, using a variational method of Ambrosetti and Rabinowitz [1]. Let u_n denote the extension of U_n to Ω defined to be 0 in $\Omega \setminus \Omega_n$. Using (F) and the variational characterization of U_n we prove that the sequence of Dirichlet norms $||u_n||_{1,2,\Omega}$ is uniformly bounded and uniformly positive. Then a priori estimates, embedding theorems, and a "bootstrap procedure" establish the convergence of a subsequence of $\{u_n\}$ locally uniformly in $C^2(\Omega)$ to a solution u(x) of (1) satisfying u(x) = 0 identically on $\partial\Omega$. Furthermore, these techniques imply that there exists a positive constant C, independent of x, such that both

$$|u(x)| \le C ||u||_{1,2,M(x)}, |\nabla u(x)| \le C ||u||_{1,2,M(x)}$$

for all $x \in \Omega$, where M(x) denotes a bounded domain for all $x \in \overline{\Omega}$ with volume of M(x) constant. The asymptotic behavior of u(x) stated in Theorem 1 then follows since $u \in W_0^{1,2}(\Omega)$. This and a comparison argument show that the solution is positive throughout Ω and exponentially decaying as $|x| \to \infty$. Theorem 1 extends known results of Berestycki and Lions [3], Berestycki, Lions, and Peletier [4], Berger [5], Berger and Schechter [6] and Strauss [10] in three directions: general coefficients (i.e. not necessarily constant or radially symmetric), general domains, and problems with boundary conditions.

We prove Theorem 2 by first constructing subsolutions w_n of Dirichlet problems in bounded domains Ω_n , n = 1, 2, ..., possible for $\lambda \ge \lambda^* > 0$ because of a theorem of Rabinowitz [9, p. 177] and a new extension result. Then there exists a sequence of solutions u_n of (1) in Ω_n squeezed between w_n and the constant supersolution T by a theorem of Amann [2, p. 283], and u_n is extended by the definition $u_n = 0$ in $\Omega \setminus \Omega_n$. Following our method in [8] we use L^p -estimates, Sobolev embedding, and Schauder estimates to prove that $||u_n||_{C^{2+\alpha}(\overline{M})}$ is uniformly bounded with respect to n for any bounded domain $M \subset \Omega$. Then a compactness argument shows that a subsequence of $\{u_n\}$ converges to a bounded positive solution of (4) for $\lambda \ge \lambda^*$. Theorems 3 and 4 can then be established with the aid of Kato's a priori estimates [7, p. 415].

REFERENCES

- 1. A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381.
- H. Amann, Existence and multiplicity theorems for semilinear elliptic boundary value problems, Math. Z. 150 (1976), 281–295.
- H. Berestycki and P. L. Lions, Une méthode locale pour l'existence de solutions positives de problèmes semi-linéaires elliptiques dans R^N, J. Analyse Math. 38 (1980), 144-187.
- H. Berestycki, P. L. Lions and L. A. Peletier, An ODE approach to the existence of positive solutions for semilinear problems in R^N, Indiana Univ. Math. J. 30 (1981), 141–157.
- 5. M. S. Berger, On the existence and structure of stationary states for a nonlinear Klein-Gordon equation, J. Funct. Anal. 9 (1972), 249-261.
- 6. M. S. Berger and M. Schechter, Embedding theorems and quasi-linear elliptic boundary value problems for unbounded domains, Trans. Amer. Math. Soc. 172 (1972), 261-278.
- 7. T. Kato, Growth properties of solutions of the reduced wave equation with a variable coefficient, Comm. Pure Appl. Math. 12 (1959), 403-425.
- 8. E. S. Noussair and C. A. Swanson, Positive solutions of semilinear Schrödinger equations in exterior domains, Indiana Univ. Math. J. 28 (1979), 993-1003.
- 9. P. H. Rabinowitz, Pairs of positive solutions of nonlinear elliptic partial differential equations, Indiana Univ. Math. J. 23 (1973), 173-186.
- 10. W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), 149-162.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NEW SOUTH WALES, KEN-SINGTON, NEW SOUTH WALES, AUSTRALIA 2033

Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Y4