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DYER-LASHOF OPERATIONS IN if-THEORY 

JAMES E. McCLURE1 

Dyer-Lashof operations were first introduced by Araki and Kudo in [1] in 
order to calculate ü*(QnSn+fc; Z2). These operations were later used by Dyer 
and Lashof to determine H*(QY;ZP) as a functor of H*(Y;ZP) [5], where 
QY = | J n H

n E n y . This has had many important applications. Hodgkin and 
Snaith independently defined a single secondary operation in if-homology (for 
p odd and p = 2 respectively) which was analogous to the sequence of Dyer-
Lashof operations in ordinary homology [7, 13], and this operation has been 
used to calculate K*(QY] Zp) when Y is a sphere or when p = 2 and y is a real 
projective space [11, 12]. In this note we describe new primary Dyer-Lashof 
operations in if-theory which completely determine K*(QY;ZP) in general. 

We shall remove the indeterminacy of the operation by lifting it to higher 
torsion groups. First we establish notation. X will always denote an Eoo-
space [9] and Y will denote an arbitrary space, considered as a subspace of 
QY via the natural inclusion. We write K*(Y; r) for K0{Y; Zpr) 0 ^ ( 7 ; Zpr)\ 
in particular if-theory is ^-graded and we write |x| for the mod 2 degree of 
x. There are evident natural maps 

pt:Ka(Y;r)-+Ka(Y;r + s) i f s> l , 

*:KaQ
r;r)-+KaOr',t) i f l < t < r , 

and 
ft:lfa(r;r)->lC0_i(y;r). 

T H E O R E M 1. For each r>2 and a e Z2 there is an operation 

Q:Ka(X;r)-+Ka(X;r-l) 

with the following properties, where x, y € K*(X;r). 
(i) Q is natural with respect to E<x> -maps. 

(ü) Q(x + y) = { 
Qx + Qy-ir %P^-' tfM = M = o, 

[Qx + Qy if\x\ = \y\ = l. 

(iii) Q(j> — 0, where <\> E K§{X\r) is the identity element 

(Qx • 7r(yP) + 7r(xP) • Qy + p{Qx)(Qy) if\x\ = \y\ = 0, 

Qx• 7r(yP) + p(Qx)(Qy) if\x\ = l,\y\=0, 

((Qx)(Qy) if\x\ = \y\ = l. 

(iv) Q(xy) = I 
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(v) oQx4QaX f / | x | = °' 
T(CTX)P + pQcrx if \x\ = 1, 

where a : Ka(QX;r) —• i f a+i(X;r) is t/ic homology suspension. 
(vi) /ƒ A; zs pn'me top, then Qipk = V>fcQ> where ipk is the kth Adams operation. 

M A - l Q X = B U(3rXy + pQPrX if\x\ = l. 

QTTX = 7rQx ifr>3 and 
(xp i / | x | = 0 , r = l, 

(viii) 
Qp*x = < 

p*Qx - (pP-1 - l)x*> z/|x| = 0,r > 2, 

0 tf|x| = l , r = l, 

[p*Qx t / |x | = l , r > 2 . 

(ix) Let p = 2. ƒƒ x € ^ i ( X ; l ) taen Q/?22*x = x2. ƒƒ x G JK"i(X;2) tfien 
(7rx)2 = (7r/32x)2; m particular (irx)2 G K0(X;1) is zero if x £ Ki(X;r) 
with r > 3. 

R E M A R K S , (i) There are no Adem relations. 
(ii) If x E Km(X]l) has fix = 0 then x lifts to y G ÜC(X;2). Thus one 

can define a secondary operation (J on ker/3 by (Jx = Qy. The element y is 
well defined modulo the image of p*, and thus Theorem 1 (viii) shows that 
Qx is well defined modulo pth powers if |x| = 0 and has no indeterminacy 
if |x| = 1. This is essentially the operation defined by Hodgkin and Snaith 
(although their construction is incorrect when p is odd, as shown in [10]). 

The next result shows that, in contrast to ordinary homology, K*(QY; 1) 
will in general have nilpotent elements. 

T H E O R E M 2. 7r(/3rx)pr = 0 inK0{X;l)ifxeKx{X)r). 

If x G K*(Y;r), we write Qsx G K*(QY\r - s) for the sth iterate of Q 
when s < r. These elements give a family of indecomposable generators in 
K*(QY; 1), but in general there can be other generators as well. For example, 
if x G Ki(Y] 1) with /3x # 0 then x(/3x)p_1 has zero Bockstein by Theorem 
2, hence it lifts to an element z G Ki(QY;2), and it turns out that Qz 
is indecomposable (note that we cannot apply the Cartan formula to Qz). 
The next theorem allows us to deal systematically with elements like z\ in 
particular it gives the higher Bocksteins of such elements. 

THEOREM 3. For each r > 1 there is an operation 

fl:/fi(X;r)-*üfi(X;r + l) 

with the following properties, where x, y G Ki(X; r). 
(i) R is natural for Eoo-maps. 
(ii) p*Rx = Rp*x, TTRX = Qp*x — x(/3rx)p_1

; and ifr>2, RTTX = Qp*x — 
pP-^O^x)?- 1 . 

(iii) fr+iRx = Q/?r+2p2x. 
(iv) Ifr>2, then QRx = RQx. 
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(v) If k is prime to p, then Ripk — ipkR. 

(Vi) °Rx=z\„ r/„M»i , „2 
p*[(crx)p] i / r = l, 

P*[{(TXY]+PIQ<TX ifr>2. 

p-i 

R{x + y) = Rx + Ry-^ 
(vu) 

irjip.xx/î^ip^r^^xp^)^ 

+ ( V . X J / S r + i P ^ X y X i S r + i P ^ ^ - ^ + i P ^ ^ - 1 

Theorems 1 and 3 imply that 7rQsRtx is decomposable if x G ifi(Y;r) and 
s <r + t — 1. If s = r + £ — 1 and 7r/?rx # 0 then this element turns out to be 
indecomposable. 

In order to give a Cartan formula for R and to provide generators for the 
higher terms of the Bockstein spectral sequence, we next give a if-theory 
analogue for the Pontryagin pth power introduced in ordinary homology by 
Madsen [8] and May [4], Note, however, that by part (viii) of the following 
theorem this operation does not give rise to new families of indécomposables 
mKm(QY;l). 

T H E O R E M 4. For each r > 1 there is an operation 

Q:K0(X;r)^K0(X;r + l) 

with the following properties. 
(i) <2 is natural for Eoo-maps. 

(ii) irQx = xv and Qp*x = pP~xp*Qx. Ifr>2 then QTTX = xv. 
(in) 7r/3r+ifi2: = xP-1/3rx. 
(iv) Let p be odd. Then 

R(x )== j(Rx)(&y) tfM = l,|y|=Oandr = l, 
(Xy) \(Rx)(Qy) + pl[(Qx)(Qy)} if \x\ = l,|y| = 0 andr > 2. 

Q(xy) = (fix)(fiy) if \x\ = \y\ = 0. 

(v) If k is prime to p, ipkQ = Qipk. 

(vi) <2(x -f y) = Qx + Qy + £ - ( P )p*(x V"*) . 

(V i i) °&X = Ï 0 r - l 
0 if p is odd, 

2r-124{ax){prax)] ifp = 2. 

(viii) QQx = < 

0 i/r = l, 

f^rV-^^-^KQx)^ tfr>2. 
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REMARK. The formulas in part (iv) have analogues when p = 2, but some 
of the coefficients in this case have not yet been determined. 

Using the operations Q and R we can completely describe K*(QY; 1). We 
shall assume that y is a finite complex, although this condition can be avoided. 
First recall the construction CY from [9]. By [4, Theorem 1.5.10] we have 
K*(QY; 1) = {TTOY^K^CY; 1), and so it suffices to give K*(CY; 1). 

Next recall the reduced If-theory Bockstein spectral sequence E^Y from 
[2]. If Y is a finite complex we have E™Y = E™Y for some n, and we can 
choose a subset A» C K*(Y;Z) projecting to a basis for EfY. Proceeding 
inductively, we can choose subsets A C K*(Y;r) such that 

Ax>uAl_1ui9n_1(Al_i)u-..uAru/îr(Ar) 
projects to a basis of E^Y for 1 < r < n — 1. We write A r 0 and Ar\ for the 
zero- and one-dimensional subsets of A - Let BY be the quotient of the free 
strictly commutative algebra generated by the four sets 

{nQsx\x e A , 0 < s < r}, {7Tpr-sQ
sx\x e Ao , 0 < s < r < oo}, 

{Qr"^sRs~^1x\x e Arl,r < oo,0 < 5}, and {7r(3r+sR
sx\x G Arl, r < 00,0 < s} 

by the ideal generated by the set 

{(<Kf3r+sR
sx)pr+a\x E Ai,r < oo,0 < s}. 

The Dyer-Lashof operations Q and R give an additive homomorphism X : BY —• 
K*{CY\ 1), which is a ring homomorphism if p is odd but not if p = 2. Our 
main theorem is 

T H E O R E M 5. X is an isomorphism. 

REMARKS, (i) Theorems 1, 3, and 5 also give the ring structure of 
K*(CY; 1) when p = 2. First recall that mod 2 if-theory is noncommutative 
[2], in fact the commutator of x and y is (f3x)(Py). Now 

0{Qr+'R'+1x) = ( /? r + s + 1 # s + 1 x) 2 r + ' 

if 2; E A-i with r < 00 and s > —1, and all other generators (except Qr~1x 
for x G Aro, r < 00, whose Bockstein is the generator /3Qr~1x) have zero 
Bockstein and hence lie in the center. Further, all odd-dimensional generators 
have square zero except in the following cases: 

(7rQr"2x)2 = (/8rx)2r~1 if x e Arl, 2 < r < 00; 

(Q r + af i a + 1x) 2 = (7r/?r+5+2JR
s+2x)2r+s if x e Ari,r < 00,5 > - 1 . 

These facts, together with Theorem 5, determine the ring structure. 
(ii) The effect of (Q/)* : K*{QY; 1) -* K*(QZ; 1) for any ƒ : Y - • Z can be 

ascertained from Theorems 1, 3, and 5 if ƒ*: K*(Y)r) —• K*(Z;r) is known 
for all r > 1 (although the formulas can become complicated unless ƒ* takes 
the chosen sets A for Y into the corresponding sets for Z). In particular if 
f:S2-+S2is the degree p map then Theorem 1 (ii) implies that (Q/)* is 
nonzero on K*(QS2; 1). Thus K*{QY) 1) is not a functor of if+(y; 1), a fact 
first noticed by Hodgkin [7]. 
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(iii) Theorem 5 specializes to give an independent proof of the computations 
of Hodgkin [6] and Miller and Snaith [11, 12]. The operation R did not arise 
in those computations since in the cases considered Ar\ was empty for all 
r < oo. 

Finally, we describe the Bockstein spectral sequence for CY. 

THEOREM 6. For 1 < m < oo, E™(CY)+ is additively isomorphic to the 
quotient of the free strictly commutative algebra generated by the six sets 

{7rQ5x|x G A-, m < r - s, s > 0}, 

{7rf3r-sQ
sx\x G Aro, m < r — s < oo, s > 0}, 

{nQm-r+8Qax\x G A-o, 1 < r - s < m, s > 0}, 
{7rpmQm~r^sQsx\x e A r 0 ,1 < r - s < m, s > 0}, 

{KQt~mRt-rx\x G Ai,t > max(m,r + l),r < oo}, 

and 
{7r/?t-Rt_rx|x G Ari,t >max(m,r),r < oo} 

öt/ t/ie ideal generated by the set 

{(7r/3tR
t~rx)pt+1~m\x G Ari,t > max(m,r),r < oo}. 

If p is odd or m > 3 t/ie isomorphism is multiplicative. The differential in 
E™(CY)+ is determined by the formula 

TrPmQt-^Rt-'x = ^l3tR
t-rxft~rn 

for x G Ari, t > max(m, r), r < oo. 

The construction of the operations is as follows. Let Mr be the Moore 
spectrum S~x Upr e° and let K be the integral if-theory spectrum. By 
definition, any x G Ka(X; r) is represented by a stable map 

x: Sa-+KA?,MrAX. 

Since the dual of SM r is M r , such a map induces 

x': E a M r - ^ K A X . 

Applying the stable extended power functor Dp and using the fact that K AX 
is an Hoo ring spectrum [3] one obtains a composite 

x": DpE
aMr - • Dp(X AX) -> K AX. 

Finally, if e G i f a (D p £ a M r ; s) for some s one has the composite 

XaMs^K AD^Mr1^' K AK AX^1 K AX, 

where /i is the X-theory product. This composite represents an element of 
Ka(X;s) depending only on e and x. The operations Qx, Qx and Rx are 
obtained in this way for various choices of e, and the proofs of Theorems 1, 
3, and 4 reduce in each case to the analysis of e. The construction has the 
further advantage that the proof of Theorem 5 is reduced, after some diagram 
chasing, to the universal case Y = T,aMr. Details will appear in [3]. 
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