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WHAT IS A QUANTUM FIELD THEORY? 

BY DAVID C. BRYDGES1 

Introduction. Quantum field theory began in 1927 with a paper by Dirac [1] 
in which he sought a framework that would unite the classical electromag-
netism of Maxwell with quantum mechanics. Ever since then it has been under 
continuous scrutiny by physicists, which illustrates the fact that in some ways, 
physics is more highly focused than mathematics. A mathematician is not 
forced to work on the Riemann hypothesis but ambitious physicists must work 
in the areas which have experimental durability. In view of all this attention 
from a different culture, it is not surprising that conventions and modes of 
reasoning in quantum field theory became difficult for mathematicians to 
penetrate. 

In this article I shall survey a small part of the mathematical work accom­
plished in quantum field theory. My intent is to convince you that quantum 
field theories have, in the end, turned out to be very natural generalizations of 
Brownian motion and other "diffusions" which already occupy a central 
position in analysis and probability. 

I will begin with one-dimensional quantum mechanics and show how there is 
a diffusion associated with it. In quantum mechanics the object is to determine 
the wave function 

For t fixed, ^ belongs to L2(R) and is thought of as a time (/) dependent 
vector in that Hubert space. Usually, one is given ^ at some initial time, t = 0, 
and the problem is to determine t at a different time by solving the 
Schrodinger equation 

H is a partial differential operator called the Hamiltonian. It has the form 

H = -d2/dY2 + V 

where F denotes multiplication by a function V(Y). Provided some regularity 
conditions are imposed on V it is possible to solve this equation to obtain a 
trajectory in L2(R), t -* ty(t), with value at t = 0 specified. By considering this 
process as a map 

*(* = o)^*(0, 
Presented to the Society at the Cincinnati meeting, January 15, 1982; received by the editors 

March 31, 1982. 
1980 Mathematics Subject Classification. Primary 81E05, 81E10. 
1 Research partly supported by N.S.F. Grant MCS 79-02490. 

©1983 American Mathematical Society 
0273-0979/82/0000-0616/$03.50 

31 



32 D . C . BRYDGES 

we see that at the same time a family {Ut\ t G R} of linear operators on L2(R) 
is determined. The right way to think of these is suggested by the formula 

Ut - Qxp(itH). 

If H were a selfadjoint operator on a finite-dimensional Hubert space, i.e. a 
Hermitian matrix, we would know how to understand this using the spectral 
theorem. Furthermore, Ut would be unitary and so {[/,: / G R} would be a one 
parameter group of unitary operators. Returning to the Schrödinger equation we 
insist that the Hamiltonian H obey 

(1) H is selfadjoint (on a domain fy(H) D C0°°), 
(2) H is a positive operator: (^, H^) > 0 for all ^ in the domain of H. 

(( , ) is the inner product on L2(R).) The definition of selfadjointness in this 
context (unbounded densely defined operators on a Hubert space) is discussed 
in Volume I of [2]. The principal consequence of this requirement is that the 
associated Ut is unitary (Stone's theorem). This is essential for the physical 
interpretation of >F: namely, | ̂ ( / , Y) |2 is a probability density and so we 
want it to be possible to normalize ^ at t — 0 so that the total probability 
(^ , ^ ) is 1 and then continue to have this normalization for all time. This 
norm preservation forces Ut to be unitary. A more complete discussion of this 
point can be found in [3]. 

Condition (2) is called is called stability of the Hamiltonian. Conditions (1) 
and (2) are satisfied if the potential V vanishes. Thus they are conditions on V. 

These two conditions and the spectral theorem for unbounded selfadjoint 
operators imply that the group (Ut) can be analytically continued in t accord­
ing to t -> ir with T ^ 0 to yield a contraction semigroup, exp(-Tif). Let me 
explain this a little further: I return to pretending H is a symmetric matrix. The 
spectral theorem for matrices says that H is unitarily equivalent to a diagonal 
matrix A = (\n8nm). Condition (2) implies the eigenvalues \ t are positive. By 
the same unitary equivalence Ut becomes the diagonal matrix (exp(it\n)8nm). 
Under analytic continuation this becomes (exp(-rXn)ônm) with T > 0. Since 
Xn > 0 the entries are bounded by one and it is therefore a contraction (the 
norm is less than one). Readers familiar with the spectral theorem for un­
bounded selfadjoint operators will know how to restate this argument in that 
context. 

This associated semigroup exp(-TiZ) is a diffision semigroup. What does this 
mean? Let us temporarily set V — 0. exp itH is an integral operator repre­
sented by a kernel G( Y, Y') which is the fundamental solution of 

The kernel of exp(-Ti/) is the fundamental solution of the diffusion equation: 

(-f+4)«=°-
\ 3T dY2J 

This remark merely defers the question to: why is this called the diffusion 
equation? I will answer this in the next section by explaining how exp(-r//) is 
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connected to a functional integral, an integral over paths which represent 
possible trajectories of a diffusing particle. 

The reason for being interested in the diffusion is that quantum field 
theories look fairly awesome when approached within the context of quantum 
mechanics. They are much easier to appreciate in terms of their corresponding 
diffusions. This was first exploited by Nelson [4] as a mathematical tool. 
Within the physics literature it has an earlier history attached to Schwinger and 
Symanzik. 

1. Matrices with positive entries, diffusions, and functional integrals. Let 
M = (M/y), i, j E 7, be a symmetric matrix with zeroes on the diagonal. The 
resolvent of such a matrix can be represented as a weighted sum over random 
walks on the index set I. To see this, consider the resolvent expansion 

(X - M)"1 = v + TM + ^M^-M^- + • • • . 
A À A A A 

This expansion converges if | X | is sufficiently large. Consider the (/th entry of 
the third term 

2 MikMkjTi-
ker A 

We put the pairs ik and kj in correspondence with the two steps of a random 
walk, co, which starts at /, goes to k, and then toy. We can label all the terms 
coming from the resolvent expansion in this sort of way and obtain a 
representation for the (/th entry of the resolvent 

where the sum over co is a sum over all random walks on I which start at i and 
end at j after an arbitrary number of steps. /w is a weight assigned to co by 
taking the product of entries Mu,9 such that //' is a step in co (allowing 
multiplicity) and | co | is the length of co, the number of steps 4-1. This formula 
is well known in the theory of random walks. It has found some interesting 
applications in field theory and statistical mechanics [5-7]. 

Having exhibited the underlying idea, let us now consider the exponential of 
a matrix M which we split into its diagonal (D) and off diagonal (O) parts, 
M = D + O. By expanding the 2 «-fold product 

etM= lim (etD'net0'n)n 

n->oo 

and putting the sum over matrix indices on the right-hand side in correspon­
dence with random walks we can obtain a representation for the above 2 «-fold 
product. However, in this case the additional variable t and the limit n -» oo 
make it convenient to parametrise the random walks by a time t, i.e. they are 
functions co: [0, /] -» I. To distinguish this from the situation for the resolvent 
we call these paths. 

If the entries of O are nonnegative, the contribution from each path is 
positive. This is important in controlling the n -» oo limit to obtain 
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PROPOSITION. Let M = (Mtj% z, j G I, be a symmetric matrix with nonnega-
tive off diagonal entries. On the space of all paths there is a measure dju'(co) such 
that [exp(fAf)]l7 = /rf/A/(w)8/.(w(0))Sy(co(0) where 8t(k) is the function on I 
which equals 1 ifk — i and zero otherwise. 

To see what this has to do with the quantum mechanical semigroup 
exp(-rif) notice that the finite difference approximation to the Laplacian 
d2/dY2 is the symmetric matrix 

/ . \ 

1 - 2 1 
1 - 2 1 

1 - 2 1 

Aside from being infinite it is of the form of the M in the proposition above. 
Furthermore, the finite difference approximation to H is also a matrix which is 
positive off diagonal. 

This suggests that there will be a functional integral representation for 
exp(-/[-82 /9^2 + V]). This is correct. If V=0 this leads to the Wiener 
integral and Brownian motion. The following theorem is an extension of these 
ideas. It is due to Feynman, Kac, and Nelson. This type of theorem is 
discussed in the new book by Glimm and Jaffe [8]. See also [9], 

For this theorem the space of all paths is the set of all continuous functions 
o): R -> R, T -» CO(T). 

THEOREM. Let H = -92 /8Y2 4- Vbe self adjoint with V continous and bounded 
below. Suppose Q is an L2 solution of HÛ = 0. Then there exists a probability 
measure dju(co) on the space of paths such that for t G R+ , F, G G L°°(R), 
(F^Qxp(-tH)GÜ) = f dfiF(cù(0))G(cù(t)). 

Note that paths are now functions on the infinite time interval (-00,00). 
This is the effect of including 12. It will allow us to consider d\i in conjuction 
with time translations. 

In the next section I will examine the inverse question: given a measure on 
path space, how can one tell if it comes from quantum mechanics and how 
does one recover quantum mechanics from it? The answer to this will enable us 
to reconstruct a quantum field theory (to be defined!) from its associated 
"diffusion". 

2. From diffusions back to quantum mechanics. It can be shown that the 
measure d\i of the last theorem has two properties: 

(1) translation invariance; 
(2) "Osterwalder-Schrader Positivity" (O.S. Positivity). 

In property (1) the group of translations (time translations) acts on the space 
of paths according to w(f) -> wT(f ) = œ(t + T). This is a translation by T G R. 
To understand the O.S. positivity we need some definitions. Let {tl912,.. .,tN} 
be an arbitrary finite set of positive times. Let F be a continuous function of N 
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variables so that we can define a function F(oi) on paths by 

F(a))=F(W(0,«(0 « y ) . 
The class of functions obtained in this way forms an algebra, &+. We can also 
obtain another algebra 6E~ by taking our finite sets {tv...,tN} to be negative 
times. 

There is a map 

induced by the reflection t -> -t on R; i.e., 

e^ (co( / 1 ) , . . . , co (^ ) )=^(co( - / 1 ) , . . . , . o ( -^ ) ) . 

The measure d\i satisfies 

fdix(o))~@FF>0 

for all (square integrable) F € S + . This is known as O.S. positivity. 
Conditions (1) and (2) together with technical conditions (e.g. existence of 

all moments and continuity properties of moments) characterise measures on 
path space which come from quantum mechanics. Here is a sketch of the 
proof: consider/, g E &+ with the "inner product" 

(f,g)=fd^Wfg. 

In fact, it is not necessarily an inner product because ( , ) may be degenerate 
so we form &+/I where / is the ideal of functions ƒ such that (ƒ ,ƒ ) = 0. We 
complete &+/I with respect to ( , ) to get the "physical Hubert space", %. On 
% one can produce a contraction semigroup Pn namely the one induced by 
time translations. [It is only a semigroup because &+ is not mapped into itself 
by negative time translation.] Pt is easily verified to be self adjoint relative to 
( , ) and can be verified to be strongly continuous in t. A theorem (Hille-Yosida) 
from functional analysis tells us that such a semigroup can be written in the 
form 

Pt = exp(-tH) 

for some self adjoint positive operator H on %. This is the Hamiltonian. The 
spectral theorem is then used to produce cxp(itH) = Ut as discussed earlier. 

Thus measures dfi satisfying (1) and (2) and some regularity can be used to 
construct a Hubert space, a Hamiltonian H, and its associated unitary repre­
sentation of time translations. There is also a Feynman-Kac-Nelson type 
formula relating exp(-tH) and d/x. This reconstruction we have just sketched is 
set out in detail in [8]. 

3. Euclidean (Boson) quantum fields. In the last section I was considering 
measures on the space of all paths in R with .the properties of translation 
invariance and O.S. positivity. Paths are functions from one variable ? 6 R t o 
R. A very natural generalization of this is to make time ^-dimensional, i.e. 
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replace the path space of paths t -> co(t) by the "field space" of fields <>, 

<J>:R" -» R; x =(x0, xx,.. .,xp_x) -> tf>(x). 

We have called our ^-dimensional time (x0, xl,...,xv_l) to suggest "space-
time". If v = 1 we are back to path space and ordinary quantum mechanics. 

We now inquire into the existence and properties of measures on field space 
satisfying the analogues of properties (1) and (2) of the last section. Property 
(1), translation invariance, becomes Euclidean invariance since this is the 
group of motions of R" which preserves its standard metric. An element R of 
the Euclidean group acts on field space by <f>(x) -+ <j>'(x) = <j>(Rx). In the 
definition of Osterwalder-Schrader positivity, property (2), we need only 
replace the reflection t -* -t appropriate to R by the reflection 
(JC0, x1} . . . ,x„_i) -* (-x09 xl9... ,xv_r) through thex0 = 0 hyperplane. 

Experience has taught us that this framework should be weakened by 
enlarging field space to tyXW), the space of distributions on R". Since fy' 
contains continuous functions we could have done this for v = 1 but the 
measure produced by the Feynman-Kac-Nelson theorem would be supported 
only on a small part of <$)', the continuous functions, which is wasteful. 
However, f or v > 1 it will be necessary to allow fields to be worse behaved. [In 
all (v > 1) examples so far constructed continuous fields are a set of measure 
zero inside ^D'.] I will continue to write equations as if fields were functions. 
Readers familiar with distributions will know how to make the cosmetic 
changes required to put in " test functions". 

DEFINITION. A ^-dimensional (Boson) Euclidean quantum field theory is a 
Borel measure d\i on ^'(JNa) satisfying 

(1) Euclidean Invariance, 
(2) Osterwalder-Schrader Positivity, 
(3) Regularity (analyticity and Lp bounds for the Fourier transform of dp). 

(1) and (2) have been explained above. The Euclidean group is the group of 
motions of R" with its standard metric. It induces an action on functions on R" 
by change of variables. (This action in turn induces one on ^D' because ty' is 
dual to C™(W).) The property (3) is more technical (and less canonical). It 
assures that dp has moments to all orders and limits the singularities of these 
moments. We refer the reader to [8] for details. 

The next question is what will we get when we try to reconstruct a quantum 
mechanics in analogy to the path space discussion? In that context recall that 
invariance of dp under translations in time gave rise to a unitary representation 
[Ut = exp(itH)] of the translation group on the physical Hubert space. Thus in 
this case it is possible that the whole Euclidean group will, in some form, 
reappear acting on the physical Hubert space. The Euclidean group preserves 
the standard metric xl + • • • +xf_x on R". Recall that the construction of the 
unitary group exp(itH) in the path space context involved an analytic con­
tinuation t -> it. The effect of this is to change the Euclidean group into the 
group of motions of R" with the Lorentz metric -xl + x\ + • • • +xl_x. This 
group is called the Poincaré group. This is what will appear acting on the 
physical Hubert space. 
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If we return to the Feynman-Kac-Nelson theorem we see that the Hilbert 
space associated to dp, being L2(R), has the distinguished operator of multipli­
cation by Y, the coordinate for R. From this one can produce the operator 

Y{f)=jf{t)UtYU_tdt 

for any ƒ G C0°°(R). A more detailed study of the abstract reconstruction 
procedure of the last section shows that there too the Hilbert space has a class 
of distinguished operators labeled by functions ƒ E CQ°(R). 

Notice also that the translation group can act on Y( ƒ ) in two distinct ways; 
it can translate the "test function" ƒ,f(t) -» fT(t) = f(t — T) or it can act by 

Y(f) ^ UTY{f)U_T. 

However, the two are compatible, 

UrY(f)U_T=Y(fT). 

We refer to this by saying that Y( ƒ ) transforms correctly under the translation 
group. 

These remarks should motivate the following theorem which I have lifted 
from [8]. It was first proved by Osterwalder and Schrader with subsequent 
work by Fröhlich and Glimm and Jaffe. 

THEOREM (RECONSTRUCTION OF MINKOWSKI FIELD THEORIES FROM 

EUCLIDEAN FIELD THEORIES). Let d\i be a Borel probability measure on the 
distribution space ^'(R"). Suppose it has the three properties, Euclidean invari­
ance, O.S. positivity, and regularity. Then there exists a Hilbert space % carrying 
a unitary representation of the Poincarè group 9. In this space, %, there is a 
distinguished 9 invariant vector Ü, called a {the) vacuum. On % is defined a class 
of unbounded self adjoint operators called field operators {<(>(ƒ); ƒ E C™(W)} 
which satisfy locality and transform correctly under 9. 

Locality means that <K ƒ) and <>(g) commute when the supports of ƒ and g 
are space-like separated. The conclusions of this theorem are known as 
Wightman Axioms [3] for a Minkowski field theory. Thus we have, in the 
conclusions of this theorem, finally reached a description of what a (Boson) 
field theory is in the quantum mechanical context as opposed to diffusion 
context. 

There is an important feature of field theories which is not visible in the 
conclusions of the theorem above: potentially they are simultaneously a theory 
of discrete objects, "quanta" or "elementary particles". Suppose dv(Yl9.. .,Yn) 
is an «-dimensional Gaussian measure. Let I) be the vector space of n vectors 
{(/i» fi*-- >/n)' ft E R}- O n *) define an inner product by 

< ƒ, g)=jdvY{ ƒ )Y(g) where Y( ƒ ) = 2 Ytfr 
i 

Define another Hilbert space, F = exp \) ="Fock space", by 

F = R 0 & 0 (& ®, &) © (& <8>, & ®, $) 0 • • • ; 
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<8>s denotes the symmetric tensor product. (Yes, it is true that exp(ï) ® ï)') = 
exp ï) ® exp ï) '.) On F is a distinguished operator, N9 which equals j times the 
identity when restricted to theyth summand, Fj (starting j at zero). N is called 
the particle number operator. For each g E ï) there is an operator A*: F -» F 
defined by setting ^4*^ = (Jn + 1 ) X symmetrisation of ( ^ ® g) for t G F ^ 
and extending in accordance with linearity. Let Ag be the adjoint of A*. 

PROPOSITION [10]. There is a unitary map U: real L2(RW, dv) -> F such that 
multiplication by Y(g) is exhibited in canonical form 

UY(g)U-l=Ag + A*. 

This theorem about an arbitrary Gaussian measure dp can be extended and 
adapted to show that for the special class of Gaussian field theories (to be 
discussed further in the next section) the physical Hubert space % is isomor­
phic to a Fock space in terms of which a "particle structure" is defined. For 
general field theories the situation is more complex and not completely worked 
out. See [8]. 

Results on existence. A finite-dimensional Gaussian integral has the property 
that its moments are all determined by the matrix of second moments; thus if 
dv is the Gaussian measure 

dv(x) — n dxt e xP ~~ö" 2 xi^-ijxj /Normalization 

and, if S is a set of indices, then 

jdv(x) II */ = 2 II fdv(x)xixj 
i<ES y iyjŒy 

where y is summed over all partitions of S into pairs. In fact, if the moments of 
a probability measure dP in Rw obey such a formula, dP is Gaussian. For a 
measure d\x on a function space the analogue of this formula is 

ƒ*(* ) II *(*) = 2 II fdp(4>)4>(x)4>(y) 
xŒS y x,yŒy 

where S is a finite set of points in R". (For fy', points must be replaced by test 
functions.) If dp satisfies such an identity for all S we say dp is Gaussian. 

Given knowledge of Minlos' theorem [9, 10] it can be shown that Gaussian 
Euclidean quantum field theories exist for all spacetime dimensions v. The 
reconstruction theorem provides corresponding Minkowski field theories which 
describe noninteracting elementary particles. Thus the existence problem is to 
show that there are non-Gaussian Euclidean quantum field theories. This has 
been done in spacetime dimensions v — 1,2,3 [8]. For v > 5 techniques are 
now being developed to prove nonexistence of non-Gaussian field theories. I 
will discuss some such results momentarily, v = 4 is evidently some kind of 
borderline. Right now the expectation is that a special class of quantum field 
theories—nonabelian gauge theories—can be non-Gaussian in 4 dimensions 
and probably no other class yet studied can do likewise. This is the expectation 
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of the physicists (whose batting average is very good!). No interesting non-
abelian field theories have yet been constructed. There has been some progress 
on abelian gauge theories. For a good review of these directions, see [11]. 

4. Construction and renormalization. Let S(<j>) be the functional 

S(<j>) = j f[v<t>{x)]2dvx + fp(<j>(x))dvx 

where P9 known as the "interaction", is a polynomial in <j>9 bounded below and 
Z > 0. If <j>'(x) is obtained from < (̂x) by a Euclidean change of coordinates 
then S(<t>') = S(<j>). Our first attempt to write down a Euclidean invariant 
measure d\i on a function space might be to associate to each point x in 
spacetime a random variable <j>(x) and let the collection <f> — {<t>(x) = x GR"} 
be distributed according to 

"d\i(<i>) = e~sw [I d<£(x)/Normalization". 
J C G R " 

This is a meaningless equation for several different reasons. In particular, the 
uncountable product of Lebesgue measures d<j>(x) is incomprehensible. Never­
theless, it suggests the following procedure: make a finite difference approxi­
mation by selecting a finite lattice L C R " and define the finite-dimensional 
probability measure 

diiL(<t>) = e'Sd<l>) I] d0(x)/Normahzation, 

where SL(<j>) is the appropriate finite difference approximation to S(<j>). This 
fails to be Euclidean invariant because the lattice is not invariant. However if 
the lattice is symmetric about the hyperplane x0 = 0 it is O.S. positive. This is 
not too difficult to prove especially in the special case v — 1. 

Next we attempt to recover Euclidean invariance. Choose a sequence of 
lattices Lx C L 2 C • • •, getting larger and finer so as to approximate R". We 
define functions (actually distributions) by 

G(xl9...9xN) = lim UiiL(<S>)<S>{xx) '-<f>(xN) 
/ - > 00 J 

if it exists. Next we attempt to find a measure d\x on ^'(ll") whose moments 
are G(xv.. .9xN)9 xl9...9xN and TV arbitrary, i.e. d\i is such that as distri­
butions 

f J/x(^)<j[)(x1) • • -<t>(xN) = G(xl9...9xN). 
Jeu* 

(This is a generalized Hausdorff moment problem.) 
In doing all this the existence of the limit is not the worst problem, especially 

if one is willing to use compactness and subsequences. The real problems 
center around whether the limiting measure is trivial (zero or Gaussian). To 
prevent this possibility it is necessary (for v > 1) to allow the parameters, Z 
and the coefficients in the polynomial P9 to vary as the limit / -> oo is taken. 
This is called renormalization. The parameters are known as "bare coupling 
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constants". Some of them have to be chosen to diverge to oo as i -» oo. A 
relatively simple discussion of a renormalization will become available in [12]. 

This type of construction yields the "P(</>)„" field theories. Gauge theories 
result from a different choice of functional S. We replace v by covariant 
gradient acting on section <j>(x) and we also integrate over the associated 
connections. 

My final remarks concern the recent theorem of Aizenman [13] and further 
developments by Fröhlich [5]. Aizenman has shown that for spacetime dimen­
sions v> 5, and 

P(<|>) = a<$>2 + X<f>4, a G R, X > 0, 

that there is no way to choose lattice dependent bare couplings Z, a, X to yield 
a non-Gaussian field theory. Fröhlich has extended this to a theorem in four 
dimensions with the additional hypothesis ZL -» 0. These are the beginnings of 
a "no go" theory for field theories in v ^ 5 (4?!) dimensions. Some partial 
results of this type were previously obtained by Glimm and Jaffe [8]. In the 
physics literature there is a fairly convincing heuristic explanation for this and 
other facts(?) but mathematical work on it has barely begun. 
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