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FIFTY YEARS OF HOMOTOPY THEORY 

BY GEORGE W. WHITEHEAD 

The subject of homotopy theory may be said to have begun in 1930 with the 
discovery of the Hopf map. Since I began to work under Norman Steenrod as 
a graduate student at Chicago in 1939 and received my Ph.D. in 1941, I have 
been active in the field for all but the first ten years of its existence. Thus the 
present account of the development of the subject is based, to a large extent, 
on my own recollections. 

I have divided my discussion into two parts, the first covering the period 
from 1930 to about 1960 and the second from 1960 to the present. Each part is 
accompanied by a diagram showing the connections among the results dis­
cussed, and one reason for the twofold division is the complication of the 
diagram that would result were we to attempt to merge the two eras into one. 

The dating given in this paper reflects, not the publication dates of the 
papers involved, but, as nearly as I can determine them, the actual dates of 
discovery. In many cases, this is based on my own memory; this failing, I have 
used the date of the earliest announcement in print of the result (for example, 
as the abstract of a paper presented to the American Mathematical Society or 
as a note in the Comptes Rendus or the Proceedings of the National Academy). 
Failing these, I have used the date of submission of the paper, whenever 
available. Only in the last resort have I used the actual publication date. 

I wish to thank my many friends who have made pertinent comments, and 
helped refresh my memory on a number of points. Particular thanks are due to 
Saunders Mac Lane, William S. Massey, and Franklin P. Peterson. I also wish 
to acknowledge that my exposition of the solution of the immersion conjecture 
was based on a seminar talk by Professor Peterson on the same subject. 

PART ONE 
I shall begin by describing the state of the art in 1930. The apparatus of 

simplicial homology had been set up, and extended to more general spaces: on 
the one hand, via the singular theory (which was, to be sure, in a somewhat 
unsatisfactory state, owing to the fact that the groups of singular chains were 
not free); on the other, via the Vietoris theory (valid for compacta—the 
generalization to arbitrary spaces by Cech was not to appear until 1932). The 
Alexander and Poincaré duality theorems and the Hopf-Lefschetz fixed point 
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2 G. W. WHITEHEAD 

theorem had been proved. The theory of intersection and linking in manifolds 
had made its appearance, although it was expressed in terms of homology 
groups; cohomology was still in the offing. The fundamental group (and its 
relation with the first homology group) had been known since the time of 
Poincaré. The degree of a map had been defined by Brouwer and its homotopy 
invariance proved; and the fact that, for self-maps of a sphere, the homotopy 
class is characterized by its degree had been established by Hopf. However, so 
great was our ignorance that it was unknown whether a map of Sm into Sn 

with m > n > 1 is necessarily nullhomotopic. 
This uncertainty was resolved, in 1930, with the discovery by Hopf of his 

famous map of S3 on 5*2. This map can be described very simply in terms of 
quaternions. Specifically, if x is a quaternion of length 1 (which we may regard 
as a point of S3), then xix~x is a quaternion of length 1 and trace 0, i.e., a 
point of S2, and the correspondence x -> xix~l is the map in question. 
Examination of this map reveals that the counter-image of any point y G S2 is 
a great circle, and the fact that two disjoint great circles in S3 are simply linked 
is the key to Hopf s proof that this map is essential. Indeed, if/: S3 -» S2 is 
any (sufficiently nice) map, and y is a more or less arbitrary point of S2, then 
J^l(y) carries a 1-cycle z. If yl9 y2 G S2 and zl9 z2 are the associated cycles, 
then the linking number L(zl9 z2) is independent of the choice of the two 
points, and depends only on the homotopy class of ƒ; it is called the Hopf 
invariant H(f) of ƒ. Moreover, if g: S3 -> S3 is a map of degree d, then 
H{f ° g) — d - H{f). The map ƒ constructed above has Hopf invariant 1, and 
it follows that there are, not only two, but even infinitely many, distinct 
homotopy classes of maps of *S3 into S2. The definition of the Hopf invariant 
generalizes easily to maps of S2n~l into Sn. This was done in 1935 by Hopf, 
who also proved the existence of maps of Hopf invariant 2, and therefore 
infinitely many homotopy classes, for every even n (if n is odd, H is always 
zero, because of the commutation rule L(z2, zx) = (~l)nL(zl9 z2)). 

Hopf also concerned himself with maps of an «-complex K into Sn. By 1932 
he was able to achieve a complete homotopy classification of such maps. 
However, his results, expressed in the language of homology, are complicated 
to state whenever K has torsion in dimension n — L i t was not until after the 
invention of cohomology in the middle thirties that the definitive formulation 
of Hopf s result was given by Whitney (1935): if sn generates the infinite cyclic 
group Hn(Sn), then the correspondence ƒ -> ƒ*sn induces a one-to-one corre­
spondence between the set [K, Sn] of homotopy classes of maps of K into Sn 

and the group Hn(K, Z). 
The next name to appear on the scene is that of Hurewicz. In a series of four 

papers written in 1934-1936 he introduced higher homotopy groups by 
defining a group structure in irn(X) = [Sn

9 X]. Higher homotopy groups had 
been suggested in a note by Cech presented at the International Congress of 
Mathematicians in Zurich in 1932, and apparently were known even earlier to 
Dehn, but they had remained mere curiosities. Hurewicz proved the (at first 
glance surprising) result that, whereas IT^X) is in general nonabelian, the 
higher homotopy groups irn{X) are abelian for n>2.lt follows from covering 
space theory that, if p: X -» X is a covering map, then the homomorphism 
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p^\ 7rn(X) -> 7Tn(X) is an isomorphism for all n>2. The homotopy groups 
resemble the homology groups in many respects. This resemblance is pointed 
up by a homomorphism p: TTn{X) -> Hn(X); iff: Sn -> Xrepresents a E IT„(X) 

and if sn generates the infinite cyclic group Hn(S
n)9 then p(a) = f^sn. The 

deepest of Hurewicz's results was the celebrated Equivalence Theorem: if X is 
(n — l)-connected in the sense that irE(X) — 0 for all i < «, then p: irn(X) -> 
Hn(X) is an isomorphism. 

The homotopy groups of spheres are of particular interest. It is easy to see 
that Sn is (n — l)-connected; for every map of S' into Sn is homo topic to a 
simplicial map of some subdivision of Sl into a subdivision of Sn. If i < n the 
image of this map is a proper subset of Sn, and therefore ƒ is nullhomotopic. 
The group 7Tn(S

n) is infinite cyclic. And Hopfs results on 7T3(S
2)9 refined 

slightly by Hurewicz, reveal that the latter group, too, is infinite cyclic. Finally, 
the universal covering space of Sl is the (contractible) space of real numbers, 
so that TT^S1) « irt(R) = 0 for all i ^ 2. 

The homotopy groups of spheres are connected by the operation of suspen­
sion. If/: Sn -> Sr then (regarding Sn and Sr as equators in Sn+l and Sr+\ 
respectively) ƒ has an extension g: Sn+l -> Sr+l which carries the northern 
(southern) hemisphere of Sn+l into that of Sr+l. The correspondence ƒ-+ g 
defines a homomorphism E: irn(S

r) -» irn+l(S
r+l). Freudenthal was the first to 

study this operation, and in 1937 he proved the landmark theorem: E is an 
isomorphism if n < 2r — 1 and an epimorphism if n = 2r — 1. Moreover, the 
image of E is the kernel of the homomorphism H: ^2r+\(^r+l) ~~* Z defined by 
the Hopf invariant. He also obtained partial results on the kernel of E\ these 
were just strong enough to prove that the kernel of E: 7T3(S

2) -^ 7T4(S
3) is the 

subgroup of elements with even Hopf invariant, and therefore irn+l(S
n) is a 

cyclic group of order two for n > 3. FreudenthaPs methods seemed difficult 
and obscure at the time; with the improved techniques of differential topology 
available today, they are much less mysterious. 

The problem of determining whether two maps/, g: X -> Y are homotopic is 
subsumed in the extension problem: given a pair (X, A), a space Y, and a map 
ƒ : A -* Y, does there exist a map g: X -> Y such that g\A = ƒ ? This problem is 
usually approached by a stepwise extension process: assuming ƒ to have been 
extended over the union Xq of A with the ^-skeleton of X, one attempts to 
extend the result over Xq+l. This reduces to the local question of extending 
over each (q + l)-cell E\ the map ƒ | È: È -> y represents an element a E irq(Y)9 

which vanishes if and only if ƒ | Ê can be extended over E. The correspondence 
E -* a is & (q + \)-cocycle cq+l of (Jf9 A) with coefficients in IT (Y)9 and is 
called the obstruction to extending/: Xq_-^ Y\ and cq+l = 0 if and only if ƒ can 
be extended over Xq+l. Moreover, ƒ | Xq~l can be extended over Xq+l if and 
only if cq+1 is a coboundary. These facts appear, more or less explicitly, in the 
work of Hopf, Lefschetz and Whitney, and the general formulation was given 
by Eilenberg in 1939. 

In the last of the four papers mentioned above, Hurewicz studied aspherical 
spaces. These have the defining property that all of their higher homotopy 
groups vanish. Every closed surface, except for the sphere and the projective 
plane, is aspherical—more generally, if G is a properly discontinuous group 
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acting on Rn, then the quotient space Rn/G is aspherical. Thus aspherical 
spaces are quite common in mathematics. 

Hurewicz proved that two aspherical spaces with isomorphic fundamental 
groups have the same homotopy type; it follows that their homology groups 
are isomorphic, as well. Thus the homology groups of an aspherical space 
depend only on its fundamental group. However, he gave no explicit procedure 
for their determination. 

In 1940 Hopf showed how the second homology group is determined. 
Indeed, let X be an arbitrary 0-connected space, and represent its fundamental 
group 7T{ as the quotient of a free group F by a normal subgroup R. Then the 
mixed commutators [r, x] = rxr~xx~x generate a normal subgroup [R, F] of 
R n [F, F]9 and Hopf proved that the quotient group R Pi [i% F]/[R, F] is 
isomorphic with the cokernel of the Hurewicz map p: m2 -> H2. In particular, if 
X is aspherical, then the whole group H2 is determined in this way. 

This theorem of Hopf appeared after the outbreak of the second World War. 
With the resulting disruption of communications it is not remarkable that 
several mathematicians, working independently in different countries, suc­
ceeded in solving Hurewicz's problem in general. These included Hopf himself 
and Eckmann in Switzerland, Freudenthal in Holland and Eilenberg and Mac 
Lane jointly in the United States. Nowadays we would formulate their results 
as follows: if -AT is an aspherical space with fundamental group n , then, for any 
group (indeed, for any system of local coefficients) G, 

tf,(*;G)~Torfn>(G,Z), 

where the group ring Z(U) is assumed to operate trivially on Z. But the 
subject of homological algebra did not yet exist; in fact, the above considera­
tions formed one of the routes leading to its creation. 

The formulations of the above result by the above authors, while differing in 
detail, were essentially the same. However, Eilenberg and Mac Lane (1943) 
took a significant step further. Instead of an aspherical space, they considered 
one whose homotopy groups vanish in all but a single dimension n. Unlike 
aspherical spaces, these new spaces were almost unknown; indeed, the only 
significant example was the infinite-dimensional complex projective space 
P°°(C). But the analogue of Hurewicz's result for these spaces was valid: their 
homotopy types, and therefore their homology groups, depend only on their 
«th homotopy groups. Eilenberg and Mac Lane gave an algebraic procedure 
for their determination; and these spaces, soon to be named after their 
creators, were to assume enormous importance in homotopy theory. One 
reason for this is the following consequence of obstruction theory: if 
Y — K(H, n) is an Eilenberg-Mac Lane space with «th homotopy group n , 
then, for any complex K, [X, Y] is in one-to-one correspondence with 
Hn(X; n ) . Thus the cohomology groups are representatie functors. 

What is the nature of the sequence of homotopy groups of a space XI What 
conditions, if any, must they satisfy? In 1939 Eilenberg had shown that irx 

operates on irn for every n, so that the higher homotopy groups should be 
regarded as 7rrmodules. One approach to the problem is to regard the space in 
question as being built up by successive cell-adjunctions. This approach was 
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exploited by J. H. C. Whitehead in a series of papers written between 1938 and 
1946. As a by-product of this work he proved, in 1948, that there are no 
further conditions: if irx is an arbitrary group and w2, w3,... an arbitrary 
sequence of 7^-modules, then there exists a space X such that TTX( X) « irx and 
7Tt{ X) is operator-isomorphic with tni for all / > 1. 

Another approach makes use of Eilenberg-Mac Lane spaces. Suppose, for 
example, that mx operates trivially on mn for every n. Then the space 
X— IIM>1 K{irn, n) has the correct homotopy groups. (Not every space 
has the homotopy type of such a product. Were X = S2, for example, then 
P°°(C) = K(Z, 2) would be, up to homotopy, a retract of X. Since /f4(P°°(C)) 
=£ 0, we would also have H4(S2) ¥" 0, a contradiction.) In 1946 Eilenberg and 
Mac Lane showed that, whereas the group H2/lmp is determined by irl9 the 
whole group H2 is determined by irl9 TT2

 a n d a certain class 

k3 GH3(K(vl9l);7T2). 

In a landmark paper Postnikov (1951) found a far-reaching generalization of 
this result, in showing how the homotopy type of a complex X is determined 
by the homotopy groups, together with a sequence of cohomology classes 
kn+2 G Hn+2(Xn; 77„+1) (n = 1,2,...), where Xx = K(irl91) and Xn is a space 
constructed from Xn_x with the aid of {irn and) kn+l. 

Suppose that X is a. finite complex. It follows from the simplicial approxima­
tion theorem that its homotopy groups are countable. That they need not be 
finitely generated is shown by the example of the union X = Sl V S2 of a 
circle and a 2-sphere having just one point in common. In fact, the universal 
covering space X of X is the union of the real line R with a sequence of 
2-spheres S2 (i G Z), attached to R at the points of Z (X is an infinite string 
of balloons!), and ir2(X) « TT2(X) « H2(X) is a free abelian group of infinite 
rank. (To be sure, TT2(X) is finitely generated as a TTX( JQ-module, but a more 
elaborate example shows that even that much need not be true.) However, if X 
is 1-connected, then the groups irn(X) are finitely generated—more, they are 
computable, as was shown by E. H. Brown in 1956. 

The question of computability in topology is a delicate one. It is a classical 
result that the homology groups of a finite complex are calculable and that the 
problem of classifying closed 2-manifolds is solvable. On the other hand, 
Markov (1958) has shown that the problem of classifying 4-manifolds is 
unsolvable (this is related to, though not a direct consequence of, the unsolva-
bility of the word problem for groups and the fact that the fundamental group 
of a closed 4-manifold can be an arbitrary finitely presentable group). In the 
same year, Whittlesey gave a solution of the homeomorphism problem for 
finite 2-complexes; on the other hand, Michael Rabin has informed me (oral 
communication) that the problem of classifying them up to homotopy type is 
unsolvable (by the same kind of reasoning as is used in the proof of Markov's 
theorem). 

If W = £2( X) is the space of loops of a space X, then the homotopy groups 
of X and W are connected by isomorphisms <irn(X) ^ <rrn_x(W) (in fact, 
Hurewicz defined the homotopy groups inductively in this way). Therefore, if 
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we construct a sequence of spaces by the recursion formula 

Xx = X, Xn+l — Q(Xn)9 

then irn(X)t*irn_x(X2)*t • • • » irx(Xn) » Hx(Xn). Thus a knowledge of the 
homology of the iterated loop spaces of X entails a knowledge of its homotopy 
groups. In particular, we may ask the question: to what extent does the 
homology of X determine that of Wl 

The spaces X and W are connected by maps 
i P 

W-+P-+X, 

where P is the contractible space of all paths in X which start at a given point. 
The map p is a fibration with fibre W, and the above question is subsumed in 
the more general question: if p: P -> Xis a fibration with fibre W9 how are the 
homology groups of the three spaces W9 P and X related? 

The notion of fibration has been a fundamental one in homotopy theory. It 
first appeared implicitly in the work of Borsuk (1937). If X and Y are spaces, 
let F(X,Y) be the function space of all continuous maps of X into Y. If A is a 
subspace of X, the operation of restricting the domain to A is a continuous 
map p: F(X9Y) -> F(A9Y)9 and Borsuk proved that, for suitable X9 7, A9 the 
map is (in today's terminology) a fibration. The first explicit formulation of the 
notion of fibration occurred in the work of Whitney (1935-40), first on sphere 
bundles, later on general fibre bundles. His work was motivated by differential 
geometry, and the notion of fibre bundle is highly structured. In 1940 Hure-
wicz and Steenrod made the first attempt to formulate the homotopy-theoretic 
properties inherent in the notion of fibre bundle. If p: X -> B is a map, the 
data for a homotopy lifting problem consist of a map ƒ : Y -> X and a homotopy 
g: I X Y -» B of its projection p ° ƒ. A solution to the problem is a homotopy 
h: I X Y -> X of ƒ such that p o h = g. Hurewicz and Steenrod found a 
manageable set of conditions on the map p sufficient to ensure that a 
sufficiently broad class of homotopy lifting problems always has a solution. In 
subsequent years a number of minor improvements to their treatment ap­
peared. But it was Serre (1950) who took the bull by the horns in defining a 
map p to be a fibration if and only if every homotopy lifting problem with Y a 
finite complex has a solution. Later Hurewicz (1955) modified Serre's defini­
tion by removing all restrictions on 7, and it is this notion which is widely 
regarded as the correct one. In particular, Hurewicz showed that the projection 
of every fibre bundle with paracompact base space is a fibration in his sense. 

The ubiquity of fibre maps is evinced by the observation that every map is 
homotopically equivalent to a fibre map. In fact, if ƒ : X -* 7, let W be the 
space of pairs (JC, u) such that x E X and u: I -> 7 is a path starting at f{x). 
The map p: W -* Y defined by p(x, u) = u{\) is a fibration, and there is a 
homotopy equivalence /: X -> W such that the diagram 

X U W 

N 7 
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is commutative. The fibre of p is called the homotopy fibre of ƒ, and this 
construction is a useful device in homotopy theory. 

The problem of studying the relations among the homology groups of the 
fibre, base space and total space of a fibration was undertaken by Leray 
(1946-50). Leray used a cohomology theory of Cech type. The machinery of 
spectral sequences, stemming from algebraic work of Lyndon and Koszul, 
seemed complicated and obscure to many topologists. Nevertheless, it was 
successful in that he was able to calculate the cohomology groups of many 
coset spaces of the classical groups. The year 1950 marked the appearance of 
Serre's thesis. Notable not only for the many new results it contained, but also 
for its brilliantly clear exposition, it adapted Leray's theory to singular 
homology and made his methods accessible to the world of homotopy theo­
rists. The Leray-Serre spectral sequence leads from the homology of the base 
space of a fibration with (local) coefficients in the homology of the fibre to the 
homology of the total space. With its aid, Serre was able to prove, for example, 
that the homotopy groups *nn(S

r) are finite, except in the cases n = r or 
n — 2r — 1, r even, when they were previously known to be infinite. It is no 
exaggeration to say that Serre's thesis revolutionized the subject. 

Another feature of Serre's work has to do with the idea of localization. 
Almost all earlier results in homotopy theory were of a global character, i.e., 
they made statements about a group, say a homotopy or homology group, as a 
whole. On the other hand, many of Serre's results were local, referring to the 
behavior of the group with respect to a particular prime. For example, Up is an 
odd prime, then the ^-primary component of the group ir^S3) is zero for 
i <2p and Zp for / = 2p. Serre studied such questions by means of a theory of 
classes of abelian groups. More recently, Sullivan had the idea of localizing a 
space, and this has become a technique of the greatest importance. 

Another idea of Serre's is that of a cohomology operation, i.e., a natural 
transformation of functors 

Hn( ; n ) -*Hq( ; G). 

It is a consequence of the representability theorem that the totality of cohomol­
ogy operations of the above type is in one-to-one correspondence with the 
group Hq(K(H9 n); G). These groups were studied intensively by Eilenberg 
and Mac Lane (1950-52). And the groups themselves were determined ex­
plicitly by Cart an in 1953. 

Important examples of cohomology operations were given by Steenrod in 
1946. In 1940 Pontryagin had classified the maps of a 3-complex K3 into S2; 
his results made essential use of the then still novel cup products. Steenrod's 
paper carried out the classification of maps of Kn+l into Sn for n > 3. That 
the problem is one of considerable subtlety is evinced by the fact that two very 
distinguished mathematicians (Freudenthal and Pontryagin) had announced 
solutions which turned out to be incorrect. But the importance of Steenrod's 
paper transcended the solution of this particular problem, in that it introduced 
a whole family of new operations Sq': Hn{ ; Z2) -* Hn+i( ; Z2). (In fact, Sq' 
is a sequence of operations, one for each dimension n, which behave well with 
respect to suspension; thus they are the components of a stable operation.) The 
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stable operations in mod/? ccohomology form an algebra &p9 called the 
Steenrod algebra. Serre (1952) showed that the Sq' generate é£2 and in the same 
year Adem gave a complete set of relations among them. In the meantime 
Steenrod (1951) had discovered reduced/?th powers 9l for any odd prime/?; 
these, together with one other operation, the Bockstein /? , generate &p; and a 
complete set of relations was found independently and by different methods by 
Adem and Cartan (1953). 

The method of cohomology operations can be used to study homotopy 
groups of spheres. Let a G irn(S

r)9 and let <J>: Hr{ ; II) -> Hn+\ ; G) be a 
cohomology operation. The mapping cone Ta of a is a complex with one 0-cell, 
the base point (which we may ignore), one r-cell, and one (n + l)-cell. We say 
that a is detectable by </> if and only if the operation 

<j>:H"(Ta;U)^Hn+\Ta;G) 

is nonzero. For example, if a is the Hopf map, then Ta is the complex 
projective plane, and the operation Sq2: H2 -» H4 is the cup square, which is 
nonzero in Ta. Thus a is detectable by Sq2. Similarly, if a G 7T2n_{(S

n) and the 
Hopf invariant of a is odd, then a is detectable by Sq". Now Adem showed 
that if n is not a power of two then Sq" is decomposable; indeed, 

n-\ 

Sq" = 2 c,Sq'Sq"-', 
i = i 

so that Sq* must vanish in Ta. Therefore a map f: S2n~x -> Sn with Hopf 
invariant one can exist only if « is a power of two. 

Adem also showed that his relations among the Sq' give rise to secondary 
operations. These operations are defined on the set where one or more primary 
operations vanish, and are defined only modulo the images of certain other 
primary operations. And Adem was able to use these secondary operations to 
detect certain other elements of homotopy groups of spheres. But numerous 
examples show that primary and secondary operations cannot account for all 
known nonzero elements. One can formulate the notions of tertiary and even 
higher-order operations, but the complications of the algebra involved make 
them awkward to work with. Some sort of machine was needed. In 1957 
Adams, adapting the methods of homological algebra, constructed such a 
machine in the form of a spectral sequence leading from the doubly graded 
group Exta(Zp, Zp) to the /?-primary components of the stable homotopy 
groups of spheres. The latter groups ok have descending filtrations; roughly 
speaking, the higher the filtration of an element, the more complex the 
operation needed to detect it. When p — 2, the E2 term of the spectral 
sequence contains elements ht which are candidates for elements of ay 

(j — 2l — 1) of Hopf invariant one. And the relation d1hi, = h0h
2_x ¥= 0 

(z > 3) is the basis of Adams's landmark theorem (1958): the only stems which 
contain elements of Hopf invariant one are the known ones; ox, o3 and a7. The 
Adams spectral sequence has been an invaluable tool in studying stable 
homotopy theory. 
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Let us return to the Freudenthal suspension theorem. After a slight improve­
ment of his results on the kernel of E, it can be formulated as the statement 
that the sequence 

(*) *2n(S») ^7T2n+l(S"+') *lzP-*<n2n_x{S») ^ir2n{Sn+x) 

is exact (P is the homomorphism which sends 1 into [*„,*„], where in generates 
%(Sn) and the bracket denotes an exemplar of a certain product defined by 
J. H. C. Whitehead in 1940). It was in an effort to understand the Whitehead 
product that I was led in 1946 to the idea that, if/: Sr+l -> Sn+l is a map, 
then the extent to which the counter-images of two points (say the north and 
south poles) are entangled could be measured by collapsing the equator 
separating them to a point and studying the resulting element of 

7Tr+l(S
n+lV Sn+l). 

The latter group has a direct sum decomposition 

«•r+1(S"+1 V S"+1) ~ W„+1(S"+1) © * r + 1 (S"+ 1 ) © G. 

The first two summands are imbedded by composition with the generators 
i'w+1, i'„'+i °f the (H + l)st homotopy groups of the two copies of Sn+l. In the 
metastable range (n < 3r) the third summand G is isomorphic with irr+l(S

2n+l), 
the imbedding being given by composition with the Whitehead product 
[i'n+\9 ln+\\- I n this way o n e obtains a homomorphism 

ff:tf,+ 1 ( S " + 1 W r + 1 ( S 2 " + I ) 

in the metastable range. A homomorphism 

P : 7 r r + 1 ( S 2 " + 1 ) ^ _ , ( S « ) 

can be defined in the same range in terms of Whitehead products, and in 1951 
I was able to show that the sequence (*), thus extended backwards through the 
metastable range, is exact. 

Later Hilton (1954) was to give a complete description of the summand G; 
there is a direct sum decomposition 

00 

G~e*r+1(s">+'), 

where nx — In and nk tends to oc with k. The /cth summand is imbedded in G 
by composition with an iterated Whitehead product of the two above genera­
tors. 

While homotopy groups resemble homology groups in many ways, they 
differ from them in one vital respect: the excision property fails to hold for 
homotopy groups. Indeed, if £+ + 1 and El+l are the hemispheres into which 
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Sn+l is divided by an equatorial «-sphere, the diagram 

K T ^ . 

k 

* 
is commutative, while 9* andy'^ are isomorphisms. Thus E is equivalent to the 
injection k^. In 1949-53 Blakers and Massey made a systematic study of 
excision in homotopy. Introducing triad homotopy groups to measure the extent 
to which excision fails to be an isomorphism, they were able to prove that, if 
(X; A, B) is a triad with X — A U B, then, under mild smoothness hypotheses, 
the injection 

irr(A,A HB) ^7rr(X,B) 

is an isomorphism in a range of dimensions depending on the degrees of 
connectedness of the pairs (A, A Pi B) and (B, A C\ B). This result, which 
includes the Freudenthal suspension theorem as a special case, has been a most 
important tool in homotopy theory. 

Another approach to the suspension is suggested by the observation that a 
space X has a natural imbedding in tiSX in such a way that the injection 

7Tr(X) -> irr(QSX) « vr+l(SX) 

is the suspension. For the case X = Sn, Morse (1934) had given a model for 
tiSX = QSn+l (or rather, for the space of rectifiable loops in Sn+l), by means 
of which he was able to calculate its homology groups. But this beautiful result 
was undeservedly neglected by topologists for many years, until Toda (1953) 
and James (1954) independently found a model for QSX. The points of this 
model, the reduced product J(X% are formal "words" xxx2 • • • xn9 where the 
xt are points of X and two such words are to be identified if one can be formed 
from the other by insertions or deletions of the base point. The space J(X) has 
the same weak homotopy type (indeed, under mild hypotheses, the same 
homotopy type) as QSX. In 1954 James exhibited a mapp: J{X) -» / (X A X), 
and an inclusion of X in the homotopy fibre F of /?, and made the seren­
dipitous discovery that, when X — Sn and n is odd, the inclusion in question is 
a weak homotopy equivalence. If n is even, this is no longer true, but the kernel 
and cokernel of the injection irt{X) -> irt(F) are finite groups of odd order. 
Therefore, after localization at 2, the sequence (*) extends all the way to the 
left. This EHP-sequence has been an important tool in the calculation of 
homotopy groups of spheres by Toda and his students. 

The generalization by Blakers and Massey of the Freudenthal theorems 
implies that, if X and Y are finite complexes, the sequence 

[X,Y]^[SX9SY] -» >[SkX9S
kY]^[Sk+lX9S

k+lY] 

of abelian groups and homomorphisms (the first few terms apart) is eventually 
stable, i.e., E is an isomorphism if k is large enough. Its direct limit, then, is an 
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abelian group {X, Y], whose elements are called S-maps of X into Y. The 
study of the resulting suspension category was taken up by Spanier and J. H. C. 
Whitehead in 1953-57, and their celebrated duality theorem proved. If X is a 
subcomplex of (some triangulation of) Sn+\ its complement has the stable 
homotopy type of a finite complex, called an n-dual of X. And the Spanier-
Whitehead duality theorem asserts that, if X* and 7* are «-duals of X and 7, 
respectively, then there is a natural isomorphism between {X, Y} and (7*, X*}. 
For example, the stable homotopy groups ot(Y) — {S\ Y) and the stable 
cohomotopy groups on~l(Y*) = {Y*, S""1} are isomorphic. 

This beautiful result is somewhat marred by the presence of the intrusive 
integer n. Now, if X* is an «-dual of X, then SX* is an (n + l)-dual of X and 
X* is an (n + l)-dual of SX. This suggests that we should look, not at the 
spaces X and X*, but rather at their suspension spectra. A spectrum is a 
sequence of spaces {Xn}, together with a sequence of maps ƒ„: SXn -» Xn+l (or 
equivalently, a sequence of maps fn: Xn -» QXn+l). The suspension spectrum of 
a space X is the sequence for which Xn — SnX, while fn is the identity map. 
And the Spanier-Whitehead duality theorem becomes neater and more natural 
when expressed in the language of spectra. 

The notion of spectrum (due to Lima (1958)) has proved to be a most useful 
one. For example, if X = {Xn} is a spectrum, as above, and Y is a complex, let 
Hn(Y; X) be the direct limit of the groups [SkY, Xn+k] under the composite 
maps 

[S"Y, X„+k] * [Sk+% SXn+lc]^ [Sk+lY, Xn+k+i]. 

The functors Hn( ; X) behave very much like cohomology groups; indeed, 
they satisfy the Eilenberg-Steenrod axioms with the exception of the Dimen­
sion Axiom, which states that the cohomology groups of a point vanish except 
in dimension zero. Moreover, the Eilenberg-Mac Lane spaces K(U, n) form a 
spectrum AT(IT), and Hn(Y; K(U)) « Hn(Y; U). But there are many more 
interesting examples of cohomology theories derived from spectra; for exam­
ple, if S is the suspension spectrum of the 0-sphere, then Hn(Y; S) is just the 
stable cohomotopy group o~~n(Y). Other theories include the various bordism 
and AT-theories. 

Two of the classical problems of algebraic topology are concerned with 
manifolds. These are (1) given a closed «-manifold M, under what conditions is 
it the boundary of an (n + l)-manifold Wl (2) Given a space X and a 
homology class z G Hn(X), when does there exist an «-manifold M with 
fundamental class ju and a map ƒ: M -> X such that f^\x = z? Almost nothing 
was known about problems until 1953, when they were attacked by Thorn in a 
landmark paper. Defining two manifolds to be bordant if and only if their 
disjoint union is the boundary of an (« + l)-manifold, Thorn showed that the 
bordism classes form a graded ring üft*. With the aid of the classifying spaces 
of the orthogonal groups, Thorn constructed a spectrum MO whose homotopy 
groups are the bordism groups, and calculated the bordism ring completely. 
This allowed him to give a complete answer to question (1) for every «, and to 
prove that the answer to (2) is always affirmative for Z2 coefficients. 
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The above results were stated for not-necessarily-orientable manifolds and 
mod 2 homology. Thorn's methods also applied to oriented manifolds and 
integral homology. His partial determination of the oriented bordism ring £2̂  
was completed in 1959 by Wall with an assist from Milnor (1958). Thorn also 
observed that the answer to (2) is negative for integer coefficients. 

The idea of bordism has been extended to manifolds with more sophisticated 
structures. Examples are unitary bordism (Milnor, 1958) and Spin bordism 
(Anderson, Brown and Peterson, 1965). 

We have seen that the group irn+ x(S
n) is cyclic (infinite if n — 2, of order 2 if 

n > 2). Let Fn be the function space of maps of Sn into itself which leave the 
base point fixed; Fn has one component F£, consisting of the maps of degree 
/c, for each integer k. And Hurewicz had observed that the spaces F£ all have 
the same homotopy type, so that ir^F^) « ^i(F0

n) « iri+n(S
n). Now the rota­

tion group On
+ is naturally imbedded in F". Accordingly, the injection gives 

rise to a homomorphism J: irt{0^ ) -» iri+n(S
n). And it is not difficult to verify 

that J is an isomorphism when n = 1. This led Hurewicz to conjecture that / is 
an isomorphism, at least for / < n — 1. Now ir2(0* ) = 0, and in 1938 
Pon try agin announced that 7rn+2(S

n) = 0 for n > 3. This seemed to lend 
credence to Hurewicz's conjecture, and in the years following, Eckmann and I, 
inter alia, attempted without success to verify Pontryagin's claim. Finally, in 
1950 Pontryagin and I, using different methods, proved that irn+2(S

n) is, in 
fact, cyclic of order two. 

Thus Hurewicz's conjecture is false. Nevertheless, the question is an inter­
esting one. The operation of suspension defines an imbedding of F" in F"+x 

which sends G„+ into 0*+x. Therefore there is a commutative diagram 

«AO: ) - nt(o:+l) 
J Ï U 

where the upper horizontal arrow denotes the injection. The "big" rotation 
group 0+ is the union of its subgroups 0„+ ; passing to the limit as n -* oo, we 
obtain a homomorphism / : trri(0

+ ) -> ai9 called the stable J-homomorphism. 
Now the homotopy groups of the finite rotation groups behave quite irregu­
larly, and so it came as quite a surprise to the mathematical community when 
Bott (1957) proved his beautiful Periodicity Theorem: the groups ^ ( 0 + ) are 
periodic, with period 8 (and the homotopy groups of the complex counterpart, 
the "big" unitary group U9 are periodic with period 2). 

The orthogonal groups are important, not only for their own sake, but 
because of the role they play in fibre bundle theory. I have mentioned that this 
theory was inaugurated by Whitney and developed by him in the years 
1935-40. Steenrod made important contributions to the subject, and his book 
The topology of fibre bundles, published in 1951, gives a beautiful account of 
the state of the subject at that time. One of the key results of the theory is the 
existence of classifying spaces. For the orthogonal groups, this takes the 
following form: let V(n) be the space of isometric imbeddings of Rn in R°°, 
BO(n) the space of «-dimensional flat subspaces of R°°, p: V(n) -> BO(n) the 
map which assigns to each u: Rn -> R°° the subspace u(Rn). The map p is the 
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projection of a principal fibre bundle with fibre On = 0(n). The space V(n) is 
contractible, and accordingly the equivalence classes of vector bundles of 
dimension n over a paracompact base space B are in one-to-one correspon­
dence with the homotopy classes of maps of B into BO(n). Moreover, there are 
imbeddings BO(n) <^BO(n + 1 ) and their union BO is a classifying space for 
stable vector bundles (two finite-dimensional vector bundles are stably equiva­
lent if and only if they become isomorphic upon Whitney addition of suitable 
trivial bundles). The resulting K-theory was studied in 1959 by Atiyah and 
Hirzebruch, who observed that this theory bears many resemblances to ordinary 
cohomology theory. The ^-theories have not only been important in topology, 
but their algebraic analogues have had significant repercussions in the domain 
of algebra. 

PART TWO 
In Part One I surveyed the development until about 1960. In doing so I 

made an effort to be reasonably complete. Since then the development of the 
subject has been so rapid and its ramifications so far-reaching that this aim is 
no longer practicable. Therefore I shall concentrate on a few lines of develop­
ment which I regard as important and/or about which I am particularly well 
informed. 

Axioms for homology (and cohomology) theory were announced by Eilen-
berg and Steenrod in 1945, and by the time their book appeared in 1952 their 
methods and philosophy had thoroughly permeated the subject. It was espe­
cially impressive that a subject as complicated as homology theory could be 
characterized by axioms of such beauty and simplicity. All but one of their 
axioms have a general character; the other, the Dimension Axiom, is, on the 
other hand, quite specific. The reason for giving it the same status as the others 
was, no doubt, that few, if any, interesting examples were known at that time 
which did not satisfy the Dimension Axiom. 

By 1959, however, the case had altered. The result of Eilenberg and 
Mac Lane that Hn(X, U) « [X, K(U, n)] prompted the observation that, if Y 
is any space, then the functor [ , Y] has many of the properties of a cohomol­
ogy group. In fact, E. H. Brown, in a landmark paper (1959) gave a very simple 
set of conditions on a functor H that it be representable (i.e., that H be 
naturally equivalent to [ , Y] for some Y). The space Y is called a classifying 
space for the functor H. Brown's representation theorem has been most 
significant for the applications of homotopy theory to other fields. Indeed, it is 
by now quite commonplace to reduce a geometric problem to a homotopy-
theoretic one by such an application. Cases in point, besides the theory of 
stable vector bundles mentioned in Part One, are the theories of microbundles 
and foliations. 

A cohomology theory, however, is not just a collection of cohomology 
functors; one needs connecting homomorphisms relating Hn = [ , Yn] with 
Hn+l — [ 9Yn+x]. Such a construction can be made with the aid of a map of 
SYn into Yn+l. Thus the spaces Yn are the components of a spectrum Y. We 
have seen that, if Y is an arbitrary spectrum, then the groups 

H"(X; Y) = \im[skX, Yn+k] 
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are the constituents of a cohomology theory. Conversely, in the paper cited 
above, Brown showed that, under mild restrictions (later shown by Adams to 
be unnecessary) that every cohomology theory (satisfying the Eilenberg-Steen-
rod axioms except for the Dimension Axiom) can be obtained in this way. 

The stable homotopy groups op(X) form an example of a nonstandard 
homology theory. This theory is universal, in the sense that, if {hq} is any 
homology theory, then there are natural pairings 

op(X)®hq(Y)^hp+q(XAY). 

Indeed, iff: Sp+k -> SkXrepresents a G op(X\ then 

ƒ A 1: Sp+kY^(SkX) A Y = Sk(X A Y) 

induces a homomorphism 

h9(Y)~hp+9+k(S'+kY)l-^hp+t,+k(S
k(XAY))~hp+ll(XAY) 

and, if u G hg(Y), we may define a • u to be the image of u under this 
homomorphism. Taking X — S°, we see that the stable homotopy groups 
op = op(S°) operate on any homology theory; taking Y = S°, too, we see that 
o^ is a graded ring, and it is known that this ring is commutative (in the graded 
sense) and associative. 

Other examples of homology theories are provided by the notion of bordism 
(Atiyah, 1960). A singular manifold in a space X is a map ƒ : M -> X, where M 
is a closed manifold. Two singular manifolds fti: Mt -» X (i — 1,2) are bordant 
if and only if there is an (n + l)-manifold W with boundary Mx + M2 and a 
map/: W -* X such that ƒ | Mi = ft. Bordism is an equivalence relation, and the 
bordism classes form an abelian group $ln(X); and these groups are the 
constituents of a homology theory. Similarly, one has oriented bordism Çl*(X\ 
unitary bordism Q"(X) and Spin bordism S2^pin(X). 

In 1959 I took up the study of homology theories. This came about more or 
less accidentally. As a by-product of his calculation of the Eilenberg-Mac Lane 
groups in the early fifties, Cartan had observed that the stable groups 

k 

are symmetric in their arguments, and asked for an explanation of this 
phenomenon. At that time spectral sequences were still relatively new to 
topologists, and we were busy learning the new toy. In 1954 I had the idea of 
looking at the homotopy groups of the join (later to be replaced by the reduced 
join, or "smash product" X A Y). Filtering X A Y by the subspaces Xp AY 
and applying the homotopy functor, I found a spectral sequence converging to 
7T^(X A Y% for which, in a certain range of dimensions, 

El„~Hp{X;«q{Y)). 

When Y = K(H, n), the spectral sequences collapses in low dimensions, and 
we have 

*p+n(XAK(Tl,n))~Hp(X;Il) (p«n). 
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If also X'= K(G, m\ where m is also large, we have 

Hp+m(G, m\ n ) « *p+m+n{X A 7 ) « *p+m+n(Y A l ) « Hp+n(U, n; G). 

Thus the symmetry is, in a certain sense, explained. 
The dimensional restrictions were unpleasant, and it wasn't until a few years 

later that Lima introduced spectra. I spent the year 1958-59 at Princeton, and 
it was John Moore who called my attention to spectra and urged me to think in 
terms of them. The Eilenberg-Mac Lane spaces K(T1, n) form a spectrum 
AT(ri), and the above result could be formulated as the statement 

Hp(X;U)^7Tp(XAK(U)). 

This gave a homotopy-theoretic construction for the homology groups, and I 
then had the idea of replacing K(H) by an arbitrary spectrum Y. The spaces 
X A Yn form a spectrum X A 7, and the resulting groups 

Hp(X;Y) = «p(XAY) 

form a homology theory. Thus we obtain a very satisfying notion of general 
homology. 

More was true. The homology and cohomology groups with coefficients in 
the same spectrum Y satisfy Alexander duality, and under a suitable notion of 
orientability, Poincaré duality as well. If fy* is a homology theory, one can use 
Spanier-Whitehead duality to define a cohomology theory !)*. Applying Brown's 
theorem, £)* is the cohomology theory with respect to some spectrum Y. By 
Alexander duality, I)* is the homology theory with respect to the same 
spectrum Y. Thus every homology theory can be obtained in this way. 

It is natural to ask whether there is a "universal coefficient theorem" for 
homology and cohomology with coefficients in a spectrum Y; i.e., are the 
groups Hq(X; Y) and Hq(X; Y) determined by the integral homology groups 
Hq(X) and the "coefficient groups" Hq(S°; Y) = irq(Y). Unfortunately, this is 
not true; the best we can do is to construct a spectral sequence leading from 
the groups Hp(X; 7rq(Y)) to the groups Hn(X\ Y). Adams has attributed this 
spectral sequence to me, and it is true that he learned of it through me in 1955. 
But the fact that there is such a spectral sequence for an arbitrary homology 
theory had become obvious as soon as spectral sequences were understood, and 
had already become part of the folklore of the subject. The first serious use of 
the spectral sequence was made by Atiyah and Hirzebruch (1959) in their 
study of AT-theory, and the spectral sequence has understandably come to bear 
their name. 

If E is a spectrum with connecting maps eq: Eq -» 02? +,, one may consider, 
for each q, the sequence 

Eq-*QEq+l >ü2Eq+2~* '•• 

and its direct limit Eq. There are commutative diagrams 

I I 

QE +l -> 02f+1 
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yielding maps of spectra, and the maps E -> E, E -> iïE, ÜE -» Œ£ are (weak 
homotopy) equivalences. Thus, from the point of view of homology, we may 
replace E by E. The spectrum E is an Œ-spectrum in the sense_ that the maps 
Eq -» QEq+ ! are equivalences. In particular, the initial space E0 is an infinite 
loop space. Other examples of infinite loop spaces are provided by the 
Eilenberg-Mac Lane spectra AT(IÏ), as well as by the periodic spectra of 
^-theory. Thus there is ample motivation for the study of infinite loop spaces 
per se. Another example is QX = Q^S00X = lim^ QkSkX (this is actually the 
first example above for the case that E is the suspension spectrum of X). 

In 1954 James had given the construction of the reduced product model for 
tiSX and proved that its suspension has the same homotopy type as a cluster 
of spaces 

00 

SQSX^ V SXM, 
n=\ 

where Ar(w) is the reduced join of n copies of X. In 1965 Milgram gave a model 
for QnSnX for any n. 

What do the spaces QnY look like? Their mod 2 homology was studied by 
Kudo and Araki (1956) and Browder (1959). In 1961 Dyer and Lashof, 
motivated by Steenrod's construction of the reduced power operations, studied 
the mod p homology of ünY for an arbitrary prime p. These spaces admit 
certain homology operations, and in the case n—co these Dyer-Lashof opera­
tions form an algebra reminiscent in many ways of the Steenrod algebra. 

In 1968 Boardman and Vogt made a breakthrough in the study of infinite 
loop spaces. Observing that the product in an infinite loop space is not only 
homotopy commutative and associative, but is subject to a whole hierarchy of 
"higher" commutativity and associativity relations, they defined an £-space to 
be an //-space satisfying all such relations, and proved that every /s-space is, in 
fact, an infinite loop space. In particular, the classifying spaces for most of the 
important types of stable fibrations (e.g., BO, BU, BG, BPL and BTop\ as 
well as many important related spaces, are infinite loop spaces. (Of course, this 
was known for BO and BU, because of Bott periodicity, but was a new and 
surprising result for the others.) Subsequent work by May (1970) and Segal 
(1973) has greatly clarified our understanding of these spaces. Important here 
is the notion of configuration space. Let Cn k be the space of A>tuples of distinct 
points of R". The symmetric group 2*. operates on the /c-fold Cartesian power 
of a space X, as well as on the space Cnk. Thus one may form the disjoint 
union of the spaces Cnk X2^ Xk\ and there is a natural map of the latter space 
into Q"S"X. This map factors through the quotient space Cn(X) under certain 
obvious identifications, and the resulting map of Cn(X) into QnSnX was 
proved by May to be a weak homotopy equivalence. This gives a very 
satisfying model of tinSnX, and the spaces Cn( X) play an important role in the 
theory of infinite loop spaces. 

The idea of composition of mappings plays an important role in homotopy 
theory (for example, the product in the stable homotopy ring o^ is induced by 
composition of representative maps). By analogy with the notion of cohomol-
ogy operation, that of homotopy operation is crucial. Just as the Eilenberg-
Mac Lane spaces provide universal examples for the former, so do the spheres 
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for the latter. In fact, if <j>: 7rn{ ) -> irr( ) is a natural transformation of 
functors, there is a unique element ft E irr(S

n) s u c n t n a t <£(«) — « ° P f° r all 
a E ^„(X). Just as in cohomology theory, however, primary information is 
rather scant, and one needs to introduce secondary and higher-order opera­
tions. Let a: Y -* Z, ft: X -* 7, y: W -+ X be maps such that the composites 
ao]8: X -> Z and /? ° y: JP -> 7 are nullhomotopic. Let 7^ be the mapping 
cone of /?, i^: 7 ^ 7 ^ , and let p^\ Tp -» SX be the identification map which 
collapses Y to a point. Then there is a commutative diagram 

and the homotopy classes of the composites a# ° yt> for all possible choices of 
the maps <x#, yb, make up a double coset {a, /?, y} of the group [SW, Z] 
modulo the subgroups a ° [SW,Y] and [SX, Z] <> Sy; the element (a, /?, y} is 
called a secondary composite (or, with some semantic inaccuracy, a Toda 
bracket) of the three maps a, /?, y. They were discovered by Toda in 1952, and, 
together with a systematic use of the EHP-sequence, allowed him to determine 
the entire /c-stem (i.e., the sequence of homotopy groups 

{%+k(S")\n=\,2,...}), 

for all k < 14. For higher values of k more powerful methods were needed, 
and, by the time his book appeared in 1962, Toda had determined all the stems 
through the 19th. This work has been carried on by Mimura, Mori and Oda 
(1963-77), and at last report they had determined all the stems through the 
24th and announced complete results through the 30th. 

In 1950 Cartan had proved that the Steenrod squares satisfy a product 
formula: if « e H'(X; Z2), v E H\X\ Z2) then 

Sq*(«ot?) = 2 Sq'(w)^Sq;(ü), 

a comparable formula holds for the reduced /?th powers. In 1957 Milnor 
observed that these formulae imply that &p is, in fact, a Hopf algebra with 
commutative coproduct 

Sq* -> 2 Sq' ® SqA 

It follows that the dual &* of @,p is also a Hopf algebra, and whereas &p has a 
complicated product but a very simple coproduct, its dual has a simple product 
(and a complicated coproduct). In fact, éBj is a polynomial algebra 
Z2[f,, f2,... ]; and if p is an odd prime, then &* is the tensor product 

Zp[Sl9t29...]®E(r09ru...) 

of a polynomial and an exterior algebra. 
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In the same year, as we have seen, Adams utilized the methods of homo-
logical algebra to study stable homotopy. After the discovery of general 
cohomology theories, it was natural to ask whether an analogous spectral 
sequence could be set up. In 1967 Novikov showed that this was the case for 
the spectrum MU associated with unitary bordism; and the Novikov spectral 
sequence has proved in many ways to be more powerful than, and almost as 
tractable as, the original Adams sequence for mod p homology. 

The success of the Adams spectral sequence in stable homotopy suggests the 
possibility of finding such a sequence for ordinary (unstable) homotopy. The 
first such "unstable Adams spectral sequence" was found by Massey and 
Peterson (1966) as a by-product of their work on the cohomology rings of fibre 
bundles. A different approach was due to Bousfield, Curtis, Kan, Quillen, 
Rector and Schlesinger (1966). These six authors found an alternative con­
struction for the stable Adams spectral sequence with a tractable Ex term in 
the form of a differential graded algebra A generated by a family of elements 
X, satisfying relations reminiscent of the Adem relations among the Sq'. The 
algebra A is the union of an increasing family of subcomplexes A(/); and the 
latter is the Ex term for a spectral sequence for the homotopy groups of Si+\ 
while the inclusion of A(/) in A(i+1) corresponds to the operation of suspension. 
Moreover, there is an " EHP-sequence" which is related in a satisfying way to 
the EHP-sequence of James. 

Let us return to the Milnor decomposition 

âZ = Zpttut2,...]®E(T0,Tu...) 

of the dual Steenrod algebra. The exterior part being something of a nuisance, 
it is natural to ask whether there is a spectrum whose homology is the 
polynomial part of &*. Such a spectrum BP was found by Brown and Peterson 
in 1965. Its importance is evinced by their result that the spectrum MU, 
localized at a prime/?, has the homotopy type of a cluster of spectra, each of 
which is an iterated suspension of BP. The Brown-Peterson construction and 
their decomposition of MU lacked certain naturality properties, and in 1969 an 
elegant construction was given by Quillen, using the concept of formal group 
law. 

The problem of realizing the exterior part of &* is much more subtle. Let 
V(n) be a spectrum whose homology is E(T0,. .. ,T„) (warning: V(n) may not 
exist). We may take V(0) to be the mapping cone of the S-map pt: S° -> S°. 
The /?-primary component of olp_2) is cyclic of order/?, and if a ! is a generator, 
there is a commutative diagram (q = 2p — 2) 

SqV(0) i V(0) 

Î I 
sq - sl 

«1 

(the left-hand vertical arrow denotes the #-fold suspension of the inclusion of 
the range of pi into F(0), the right-hand one the collapsing map of V(0) into 
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the suspension of its domain). The mapping cone of A is V(l). The mapping A 
can be iterated to obtain a commutative diagram 

S^r~x^A A 

sgrv(o) >s«r-l)v(o) - » — • sw(o) - v(o) 
î i 

S*' > Sl 
ar 

The elements ar were introduced and proved to be nonzero by Toda (1958). 
Similarly, except for a few small primes, there are spectra V(2) and V(3). 

These are the mapping cones of S-maps 

B: S«V(1) -+ V(l)9 C: Sq*V(2) -» V(2), 

and, by an iteration process like the above, one obtains new elements fin yr 

The elements jir were proved nontrivial by Larry Smith (1969-70). Toda (1970) 
initiated a systematic investigation of the spectra V(n). Oka and Toda claimed 
that Yj = 0, but Thomas and Zahler (1973) asserted that YI ^ 0. Oka and Toda 
withdrew their claim in giving an independent proof in 1975 that Yi ^ 0. And 
in 1976 Miller, Ravenel and Wilson, using the Novikov spectral sequence, 
proved that all the yr are nonzero. 

The construction of the above elements may be regarded as a generalization 
of Toda's secondary composition. Indeed, suppose that an element a G or can 
be factored by means of a commutative diagram 

SX 
sr >s° 

a 
of S-maps. Then we say that the diagram is a construction for a. (Of course, we 
rule out the trivial cases for which / or p is an equivalence.) One may ask 
whether every element of or can be obtained by a construction. 

That this is so is a consequence of a landmark result of Kahn and Priddy 
(1971). My interest in this problem arose in an effort to answer a question of 
Freyd (1964): if a: X -> Y is an S-map between finite complexes, and if 
oq(a) = 0: aq(X) -* oq(Y) for all q, is a = 0? A few days after Freyd asked me 
the question, I believed I had found a counterexample. This turned out to be 
wrong, but in setting up the example I made use of a "bistable" version of the 
/-homomorphism. The operation of 0„+ on Sn~l gives, by Hopf s construction, 
a map SnO* -> Sn. This map induces a homomorphism 

7„:W„+ , (5"0„+ ) -^+ , (S") . 

These behave well with respect to the suspension, as well as with respect to the 
inclusions 0„ ^ 0*+x. The /-homomorphism is the composite 

«k(o: )*«n+k{s»o: ) J^n+k(s"). 
In the limit one obtains the factorization 

Vk(0
+)^ak(0

+)^ak, 
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of the stable /-homomorphism; the second factor j is called the bistable 
J-homomorphism. I conjectured that j is an epimorphism for all k > 0. This 
was, however, recently disproved by Knapp (1978); in fact, Knapp shows that, 
for every prime/?, the element pp+l does not belong to the image of j . On the 
other hand, an important related result is true. 

The real projective space Pn~x has an imbedding in 0„+ due to Hopf (1935), 
and the diagram 

pn-\ _> Q + 

i i 
r ^ Un+\ 

of inclusion maps commutes. Thus we have an imbedding P00^ 0+. My 
conjecture on the bistable /-homomorphism suggests the question (proposed 
independently by Mahowald): is the composite of j with the injection 
^ (P 0 0 ) -» ok(0

+ ) an epimorphism on the 2-primary component? 
The Kahn-Priddy theorem answers this question in the affirmative. Indeed, 

the composite 

P00 a 0+<=i QXS°-» Q0S° 

extends to a map <|>: QiP™) -* Q0S° (the right-hand map is the known 
homotopy equivalence between two components of QS°). After localization 
at 2, the map <j> has a right homotopy inverse \p: Q0S° -> Q(P°°). As 
ok(X) = 7rk(QX) for any X, the result follows. A similar result holds for any 
odd prime; we must replace P°° = AT(Z2,1) by the infinite lens space K(Zp91). 
(There is one important difference: the map K(Zp, 1) -* Q0(S°) does not 
factor through 0+ . A different construction, using transfer theory and Dyer-
Lashof operations (which also works when p = 2) must be used.) 

A consequence of the Kahn-Priddy theorem is that every element of a* can 
be obtained by a construction; in fact, the one-point union of the spaces 
K(Zp, 1) for all primes/? is the only intermediate space necessary. 

Another type of construction is afforded by a theorem of Snaith (1972). The 
configuration space Cn(X) is filtered by the images Fk of the spaces 
Cn,k

 x 2 * Xk under the identification map, and Cn(X) is stably equivalent to 
VA;>0 Fk/Fk_v Using these results, Mahowald (1976) gave a construction for 
a new family of elements t\i G a2«; these elements correspond to the elements 
hxhi of the Adams spectral sequence for S°. 

The construction of the Brown-Peterson spectrum, as well as the spectra 
V(n), may be viewed as solutions of the problem of realizing geometrically a 
given module over the Steenrod algebra. Another example is due to Brown and 
Gitler (1971). The mod 2 Steenrod algebra &2 admits a canonical involution x> 
which is determined by the recursive relations 

x(Sq")= 2 Sq'X(Sq--') («=1 ,2 , . . . ) . 

Let M(k) be the quotient of 6£2 by the left ideal spanned by the elements 
X(Sq') for all i > k. The Brown-Gitler spectrum B(k) has the property that 
H*(B(k); Z2) « M(k) for every k\ and it plays an important role in Maho-
wald's construction of the r\t. 
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We conclude this article by showing how some of the above ideas were 
applied in the recent affirmative solution by Ralph L. Cohen of a famous 
problem in differential topology, the immersion conjecture. The conjecture in 
question, which dates back to about 1958, asserts that every closed differential 
«-manifold can be immersed in Euclidean space of dimension In — a(«), 
where a(n) is the number of ones in the dyadic expansion of n. The first step 
toward a solution provides an example of the phenomenon, mentioned above, 
of the reduction of a geometric problem to a homotopy-theoretic one. The 
reduction in this case was given by M. Hirsch (1958): an «-manifold can be 
immersed in Rn+k if and only if the map vM\ M -> BO which classifies its 
stable normal bundle can be compressed into the subspace BO(k) of BO\ i.e., 
if and only if there is a homotopy commutative diagram 

M -> BO(k) 

^>BO 

The first step toward the solution of the homotopy-theoretic problem was 
taken by Massey (1959). Applying the functor H*( ; Z2) (hereafter abbreviated 
to if*( )) to the above diagram, one obtains a diagram 

,H*(BO(k)) 

H*(M)*C H*(BO) 

Now H*(BO) is the polynomial ring Z2[wj, w2 , . . .] in the universal 
Stiefel-Whitney classes, while H*(BO(k))Z2[wl9... , w j ; the injection i* maps 
Wj into Wj for 7 < k and into 0 for y > k. Thus /* is an epimorphism and Ker /* 
is the ideal generated by the Wj with j > k. Hence the cohomology diagram 
exists if and only if v^Wj — 0, i.e., Wj(M) = 0, for all j > k. And Massey 
proved that this is the case for k = n — a(n). 

This result suggests the problem of determining all relations among the 
Stief el-Whitney classes of «-manifolds, i.e., of determining the ideal 

I„= r iKer i fc , 

the intersection being taken for all (compact, connected, differential) «-mani­
folds. 

The mod 2 cohomology of BO is related to that of the Thorn spectrum MO 
by the Thorn isomorphism <j>: H*(BO) » H*(MO). The isomorphism <J>* does 
not, however, preserve the action of the Steenrod algebra. Indeed, <f>* converts 
the usual (left) action of & on H*(MO) into a right action on H*(BO) through 
the formula 

Sq/**(jc) = **(xX(Sq')). 

The ideal In was proved by Brown and Peterson (1962) to be generated by 
the subgroups H'(BO)SqJ for all ij such that / + 2j > «. 

This result in turn suggests consideration of the related Thorn spectra. 
Indeed, the classifying map vM\ M -» BO induces a map fxM: T(vM) -> MO, 
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and the induced homomorphisms of these maps are related by the statement 
that the diagram 

H*(MO) >H*(T(vM)) 

<*>* T m * 
H*(BO) >H*(M) 

commutes (<J>̂  being the Thorn isomorphism for the induced bundle over M). 
If UM = <j>Xf(l) is the Thorn class of the latter bundle, a map 6M\ & -> H*(T(vM)) 
of 6E-modules is defined by 0M(a) = all. The above relationships easily imply 
that the module M{k\k — [n/2\ is the quotient &/ DKer 9M. And the results 
of Brown and Peterson imply that the evident homomorphisms M(k) « 
H*(B(k)) -> H*(T(pM)) can be realized by maps fM: T(vM) -> B(k). Using 
Brown and Gitier's result, Brown and Peterson (1976) proved a "Thorn space" 
analogue of the immersion conjecture: there exists a spectrum MO/In whose 
cohomology is isomorphic, as the notation suggests, to the quotient of H*(MO) 
by the ideal </>*(/„), as well as a commutative diagram 

MO/In -> MO(n - « ( « ) ) 

T(vM) —>*MO 

The spectrum MO/In can be realized as a cluster of iterated suspensions of 
Brown-Gitler spectra. 

At this point we may observe that the immersion conjecture will be proved if 
we can replace the above diagram of Thorn spectra by a commutative diagram 

BO/In -> BO(n - a(n)) 

î ^ ^ - ^ ^ I 
M —? BO 

of spaces. The left-hand half of such a diagram was supplied by Brown and 
Peterson in 1978. The map BO/In -» BO induces a bundle over the former 
space whose Thorn space is equivalent to MO/In, and a crucial result is that 
the (suspended) Brown-Gitler spectrum can be realized (after 2-localization) as 
the Thorn space of a bundle which arises naturally in the study of configura­
tion spaces. 

The proof of the immersion conjecture was completed in 1981 by Ralph 
Cohen with a construction for a map of BO/In into BO(n — a(n)) to complete 
the above diagram. The proof involves the painstaking construction of a family 
of maps fn: Xn -> BO/In, gn: Xn -> BO(n — <x(n)) making the appropriate 
diagrams homotopy commutative. Each of the spaces Xn is the disjoint union 
of a family of spaces of the form Mk X Cln_k\ and the required map 
BO/In -> BO(n — a(n)) is not difficult to construct with their aid. 
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