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BOOK REVIEWS 

Fuzzy sets and systems'. Theory and applications, by Didier Dubois and Henri 
Prade, Mathematics in Science and Engineering, vol. 144, Academic Press, 
New York, 1980, xvii + 393 pp., $49.50. 

This book effectively constitutes a detailed annotated bibliography in quasi-
textbook style of the some thousand contributions deemed by Messrs. Dubois 
and Prade to belong to the area of fuzzy set theory and its applications or 
interactions in a wide spectrum of scientific disciplines. The individual with an 
existing research commitment in this area will find the book competently 
written and an invaluable time-saver in developing an awareness of existing 
literature in English, French or German although the emphasis reflects, heavily 
at times, the authors' favorite topics. The mathematician wishing to precipitate 
out the mathematical and conceptual core of fuzzy set theory will find it 
frustrating reading, however. As I see it, the difficulty lies with how the subject 
is defined. Fuzzy set theory is not well delineated mathematically. It is 
determined by a set of papers which either have the word 'fuzzy' in the title or 
are authored by someone who has written such a paper. I am somewhat 
horrified that the authors include a bibhography specifically entitled 'nonfuzzy 
literature'. The dangerous insularity of the field has been noted in [1,17]. 

It seems justifiable, then, to direct this review in large part to fuzzy set 
theory generally. 

1. What passes for a theory. This section briefly overviews the main aspects 
of the 'mathematical core' of fuzzy set theory as represented by the first two 
chapters of "Part II: Mathematical Tools" (such unqualified references are to 
the book under review). For lack of major theorems and juicy open questions, I 
do not feel this material has yet coagulated into what mathematicians would 
call a theory. 

By identifying subsets of a set with their characteristic functions, the 
Boolean algebra structure of the set of subsets of a set derives, via pointwise 
operations, from the Boolean algebra structure of the two-element set 2 = 
{0,1}, 0 for 'false' and 1 for 'true'. Fuzzy set theory generalizes 2X to [0,1]* 
where [0,1] is the unit interval. Elements of [0,1]* are called fuzzy sets (with 
universe X). The rigorization of probability theory by Kolmogoroff developed 
from a frequency paradigm. As discussed in Chapter 1 of Part IV, fuzzy sets 
have a more 'subjective' paradigm. (As a mathematician, I found this explicit 
foundational link to human psychology disquieting; perhaps the authors did 
too, since the placement of this discussion is far from the beginning of the 
book.) As a result, there is little intuitive basis to decide which operations 
[0, \]n -> [0,1] should generalize the Boolean operations 2n -» 2. The authors 
avoid this problem by compiling a voluminous undifferentiated collection of 
ad-hoc operations from the literature. 
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Three basic operations, however, are or, and: [0, l ]2 -* [0,1] and not: [0,1] -> 
[0,1]. If one accepts the axioms that or and and should be monotone, 
continuous, commutative and associative operations which distribute over each 
other and satisfy (a and b) < a < (a or b)9 (0 or 0) = 0, (1 and 1) = 1 then 
there is a unique such pair of operations, namely a or b = max(#, Z>), a and 
b = min(tf, b). (It should be pointed out, however, that these operations were 
introduced in a very similar spirit in 1930 by Lukasiewicz and Tarski [15]. 
Excepting vague references (such as those on p. 151) the authors give scant 
evidence of having researched pre-1960 literature.) Much more problematic is 
not(a) = 1 — a9 a definition subject to some controversy in the literature. In 
the framework of §4 below, I shall argue that this definition is more natural for 
probability theory than for fuzzy set theory (in a suitably precise sense). 

The extension principle asserts that each function/: Xx X • • • XXn->[09l]
Y 

extends to / : [0,1]* X • • • X[0,1]*- -> [0, l ] y by 

(A) f(nl,...,tLn)(y)= sup txàn(iil(xx)9...9[in(xn)9f(xl9...9xn)(y)). 

This reduces to the special case 

(B) fh*\>--->l*n)(y)= SUP rmn(nl(xl)9...9n„(xn))9 

when ƒ: Xx X • • • XXn -* Y (i.e., embed Y in [0, l ] r by mapping y to the 
characteristic function of {ƒ}). Mathematicians do not usually feel that the 
existence of such formulas deserves to be called a 'principle'; better justifica­
tion is attempted in §4 below. 

Using the extension principle, a group structure m: X X X -* X and a metric 
structure d: XXX-+R+ 'extend' to m: [0,1]*X [0,1]*-* [0,1]* and d: 
[0,1]*X [0,1]*-» [0,1]R+. Paraphrasing from p. 38, variables which have 
values have been generalized to variables which assign a degree of membership 
in [0,1] to each value. But there is a clash here with the original motivations. 
We were originally led to believe that 'classical is to fuzzy as (0,1} is to [0,1]'. 
But we would expect the 'classical extension' of m and d to be themselves 
whereas, however, (B) restricts to the familiar extension of functions to subsets 

(BO f(Al9...9An)=f(AlX..-XAn) 

(identifying {0,1}* with the set of subsets of X). Thus the classical extension 
of a metric space associates to a pair of subsets A, B the set {d(a9 b): a G A9 

b G B}. In my opinion this deglamorizes the discussion on p. 39 which asserts 
that the fuzzy extension of d 'models a distance between fuzzy spots'. What is 
missing is a suitable function [0,1]R+ -> R+ such as infimum which, in the 
classical case, would yield a more suitable notion of distance between sets. I 
am surprised that the need for such functions has not been recognized in fuzzy 
set theory. A candidate is introduced below in §4. 

A number of other concepts involve sufficient additional structure so as to 
render it artificial to classify them as within fuzzy set theory. A fuzzy number in 
Rn is a fuzzy set \i\ Rn -> [0,1] which is piecewise continuous, achieves the value 
1 at least once, and is such that {x: fi(x) > a] is convex for each a. The 
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algebraic structure of the set of fuzzy numbers in R is a personal favorite of the 
authors and makes several appearances. Some readers might wish to investigate 
the Sugeno integral of an interval-valued function over a subset. 

2. Theories that exist. The theory of probability and statistics is both a rich 
area of pure mathematics and a cornerstone of experimental science. The ease 
with which this theory is applicable to real world problems has created an 
atmosphere which suggests that all phenomena must be either deterministic or 
probabilistic. As an illustration of this attitude, I quote from the historic-philo­
sophic prelude of a text on the foundation of quantum mechanics [9, p. 71], 
calling attention to the third sentence. 

". . . If a system S is subject to conditions A, B9... then the 
effects X, Y,... can be observed. In this form it establishes a 
relation between the conditions and the effects. 

The most general relation of this kind which can be for­
mulated is a probability relation." 

Some of the relationships between fuzzy set theory and probability theory 
are explored on pp. 136-146. Goodman [7] has asserted that fuzzy set theory is 
subsumed by probabilistic concepts. 

In the preface to Theories of probability, [5], Fine states (the parenthetical 
remark is my own) 

"Efforts to understand, usefully formulate, and resolve the 
problems encountered (by electrical engineers) in the design 
and analysis of inference and decision-making systems led, it 
now seems inexorably, to a study of the foundations of 
probability". 

In this book, Fine considers a number of alternative theories of nonde-
terminism which, in my judgment, are in fact not probability theories. Three of 
these are 

(a) Comparative probability, an axiomatization of the relation "A is at least 
as probable as B". 

(b) A concept of 'randomness' based on the notion of pseudorandom 
sequences with high computational complexity. A 'pseudorandom sequence' 
results from a deterministic algorithm which from the classical point of view 
'simulates a random sequence' (see [11] for a mathematical discussion). But the 
intent here is to bypass dependence on the classical theory. This idea is due to 
Kolmogoroff [13]. (As a tangential observation, the concept of 'computational 
complexity' used, namely the length of a description of the generating algo­
rithm, is much at odds with more recent work in complexity [16].) 
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(c) Logical probability. This is a form of modal logic arising by adjoining to 
classical predicate logic the modal operator "it is probably true that.. .". See 
[3]. 

At the time of Fine's book, any of these theories enjoyed a state of 
mathematical development at least commensurate with the current state of 
fuzzy set theory. Points of contact with these theories were not explored in the 
book under review. Perhaps calling something a 'probability theory' automati­
cally purges it from the fuzzy camp. As Bellman has said [2, p. 32] 

"We all wear such intellectual blinders it is amazing that 
anything new is every developed". 

Why is fuzzy set theory an appealing idea? Well, we mathematicians for the 
most part have been taught that mathematical structures are built on sets and 
that the language of set theory underlies the rigorous foundation of all the 
work that we do. Fuzzy set theory hopes to deal with 'imprecision' and 
' vagueness' (e.g. as they arise in the experimental sciences) by inventing new 
sets which are intrinsically imprecise or vague, at the same time allowing the 
familiar external operations used to build new sets from old. A fuzzy philoso­
phers' stone is sought that will routinely 'fuzzify' existing mathematics. 

Probability theory is not tailored to such a program. Topos theory, on the 
other hand, is a mathematical area in a high state of development [6, 8, 10] 
which springs from the very similar touchstone of providing 'intrinsically 
variable sets' [14]. The contrast in style between topos theory and fuzzy set 
theory is profound. Whereas fuzzy set theory proceeds by ad-hoc imitation of 
standard set theory (which may be like trying to discover finite fields by 
imitating Z2), topos theory creates refreshing structural analogies at a deeper 
level. The only real axiom on a topos posits a precise sense in which a subset R 
o f I X 7 may be recast as the subset-valued function x h* {y : xRy}. Virtually 
all of the standard set-theoretic constructions can be deduced from this axiom. 
The methods used provide an inspiration for all workers hoping to build new 
set theories. For further contrast between topos theory and fuzzy set theory see 
[19]. 

3. Four criteria for a new set theory, (i) Describe a class of theories. More 
precisely, rather than relying upon a single ad-hoc imitation of classical set 
theory, single out as a paradigm particular properties considered important 
and investigate the class of all set theories that enjoy such structure. This 
includes the development of tools to compare theories. 

(ii) Mainstream examples. Usual models of set theory should be included in 
an unambiguous way. Tlie motivating paradigm or other well-known structures 
may suggest other examples. 

(iii) Internal development. The motivating paradigm should have conceptual 
richness, revealed by showing that each model carries an interpretation of 
important notions without additional axiomatization. Possible such notions are 
the equality of sets and the logical structure of the set of subsets. 
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(iv) External development. This includes classifications through the use of 
additional axioms, representation theorems (e.g. relating an abstract class to 
the mainstream examples) and characterization theorems. 

Topos theory meets these criteria admirably. Since the papers of Cole and 
Mitchell [4, 20] the class of toposes coextensive with earlier first-order models 
of set theory has been well understood and, in any case, that everyday set 
theory is a topos was clear from the beginning. A special strength of topos 
theory is that the category of sheaves on a topological space is also a 
mainstream example, so that topos theory has offered a rapprochement be­
tween set theory and sheaf theory. Each viewpoint induces its own notion of 
homomorphism between toposes, leading to a rich theory of comparison. The 
internal development of topos theory includes reasonable facsimiles of all 
constructions of higher-order set theory and its underlying logic (which is 
intuitionistic in general). The wealth of external development is hinted at by 
quoting two papers, [14, 12] in that order. 

"Around 1963...five distinct developments in geometry 
and logic became known, the subsequent unification of which 
has, I believe, forced upon us the serious consideration of a 
new concept of set. These were the following: 

'Non-Standard Analyis' (A. Robinson) 
'Independence proofs in Set Theory' (P. J. Cohen) 
'Semantics for Intuitionistic Predicate Calculus' (S. Kripke) 
'Elementary Axioms for the Category of Abstract Sets' (F. 

W. Lawvere) 
'The General Theory of Topoi' (J. Giraud)" 

"We attempt here to present a foundation of a kind of 
Differential Algebra, where the differentiation process is not 
an added structure, but something which stems from a prop­
erty of the ring object considered. Ring objects of this kind 
('rings of line type') are not present in the category of sets, 
but occur in some of the toposes of algebraic geometry, as 
well as in the category of formal schemes." 

There is a fifth criterion that a fuzzy set theory is expected to have which not 
every set theory would: wide-spectrum applicability to modelling of nonde-
terminism in engineering and experimental science. This rules out topos theory 
which, at least to date, has primarily addressed issues of mathematical founda­
tion. 

4. Distributional set theories. In this section we introduce a class of set 
theories which address the four criteria of the previous section and also provide 
a backdrop for delineating fuzzy set theory (which is a particular case). 
Mathematical details and historical remarks appear in [18], although the 
motivating paradigm is different there. 
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We begin with the viewpoint that a fuzzy set /i with universe A" is a 
'distribution' on X. The special case in which a distribution is a subset (JU takes 
values 0 or 1 only) we shall call possibilistic set theory. The further special case 
of crisp set theory restricts to singleton subsets. 

Motivating paradigm. Given sets w, X, a distribution w on n and a family (/i,: 
i E n) of distributions on Jf induces a 'net distribution' on X. In the case of 
fuzzy set theory it is clear what we should try: w(i) is the 'degree of belief /i, is 
chosen' and JU,(;C) is the 'degree of belief x occurs given /x,' so that, since or is 
sup and and is inf in fuzzy set theory, the 'net degree of belief x occurs' is 
sup, min(co(* ), /*,(*))• Let us glorify this with a name and a notation: 

co-unions for fuzzy sets. Each function co: n -* [0,1] induces, for each set X, 
the n-ary operation ([0, \]x)n -» [0,1]* of w-union, denoted (/*,: i G « ) i - ) 
LLe/M, and defined by 

U Hij(x) = sup min(co(/), ƒ*,.(*)) 
we/ ' 

The following result, not noted in the literature of fuzzy set theory to my 
knowledge, makes the 'extension principle' a principle: 

Extension principle. Embed X in [0,1]* via characteristic functions of 
singletons. Then the function ƒ of (A) is the unique extension of ƒ which 
preserves arbitrary co-unions in each variable separately. 

Thus assured of being on the right track, the formal definition is as follows. 
Distributional set theories. A distributional set theory is T = (!T, e, (-)#) where 

T assigns to each set X a set TX (of 'distributions on X9), e assigns to each set 
X a function ex: X -> TX ('point distributions') and ( - ) # assigns to each 
AZ-tuple a: n -* TX of distributions o n l a function a # : Tn -» TX (so that 
a#(co) is the 'net distribution' of the motivating paradigm) subject to the 
following three axioms: 

(i) a*ex = a. 
(n)(ex)* =id r A , . 
(iii) If j3: X -» TY9 (j3#a)# = j3#a# . 

The first axiom asserts that if to E « is a point distribution, the net distribution 
induced by (/if-: / E n) is /iw. The second axiom guarantees that if fxt is the 
point distribution on i (i E n)9 the net distribution induced by to is co itself. 
Despite its initial technical appearance, the third axiom states, simply, that 
composition of T-relations is associative. Here, a T-relation from X to Y is a 
function ft: X -* TY. If a is a T-relation from n to X it should 'compose' with /* 
to produce a T-relation /? ° a from w to Z. Define /? ° a = )8#a. Axiom (iii) is 
equivalent t o y ° ( / ? o a ) = (Y° /? ) °a . (The ft ° a construction for fuzzy sets 
appears on p. 99.) 

Crisp set theory is an example with TX = X, ex = idx , a* = a. Possibilistic 
set theory has TX = 2X

9 ex(x) = JC, a*(A) = U(a(a): a E A). For fuzzy set 
theory, TX = [0,1]*, e^(x) = X{X}> an(* «*(<*>) is the co-union of a. 

Comparison of theories is via theory maps X: T -> T which are families of 
functions X^: 7T -> TJf subject to two axioms [18, Definition 1.10]. Such X is a 
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subtheory ofT if each Xx is injective. Possibilistic set theory is a subtheory of 
fuzzy set theory. With the exception of two 'inconsistent theories', crisp set 
theory is a subtheory via ex: X -* TX. The notion of a 'cut point' 0 < c < 1, 
often used in papers on fuzzy set theory to project [0,1] onto {0,1}, is aptly 
described as a theory map [0,1] * -> 2X from fuzzy set theory to possibilistic set 
theory. 

Examples of distributional set theories abound. One mainstream example is 
probabilistic set theory for which TX is the set of finite-support probability 
distributions on X9 ex(x) is the usual point distribution and a#(u) assigns 
probability 2, w(/)M,(*) to each x G X. Although 'finite nonempty subsets' is a 
subtheory of possibilistic set theory, this theory cannot be identified with 
'equally likely probabihty' since mapping an «-element subset to the probabil­
ity distribution assigning each member \/n is not a theory map. Another 
example is 'm-flou sets' (pp. 28, 29) which is TX = {(El9... 9Em)\ Ex C • • • C 
EmCX}9 ex(x) = (*,...,<*>,*),«*(E l9...9Em) = (Fl9...9Fm) where, if a(x) 
= (Flx9... 9Fmx)9 Ft = U(Fix: x G Et). The underlying concept of LeFaivre's 
programming language FUZZY (p. 266) is partly captured by the following 
distributional set theory. Fix a 'credibility partially-ordered set' (P, < ) with 
binary infima and greatest element 1. Define TX— XX PÇ(x9 p) — x with 
credibility /?'), ex(x) = (x91), and, given a: n -» TX so that <x(x) = 
(ƒ(*), s(x))9 a*{x9 p) = (ƒ(*), inf(/>, '(*))). 

In the standard approach to fuzzy set theory, [0,1] is chosen as a set of 
'truth values' generalizing 2 — {0,1}, fuzzy sets are defined explicitly as 
functions X -> [0,1] and the logical operations or, and and not on [0,1] then 
extend pointwise to fuzzy sets. We now contrast this situation with some 
aspects of the internal development of a distributional set theory T. (It will 
take a few paragraphs to explain how to treat the Boolean operations.) 

The crisp truth set is 2; define the set of T-truth values to be T2. In crisp set 
theory, a 'point' is a one-element set (which we denote hence as 1). A T-point is 
an element of T\. There is the immediate discrepancy that for T = fuzzy set 
theory, [0,1] is identified with the set of points rather than with the set of truth 
values; the latter is [0,1] X [0,1] whose elements may be interpreted as 
'independent truth and falseness values'. For T = probabiUstic set theory, T2 
is identified with [0,1] (via 'probabihty of true'). 

For general T, for x G X and ii G TX9 define the degree of membership of x 
in /x as dm(x9 /x) = a*(/x) G T29 where ax — e2\{Xy Each distribution JU G TX 
is then represented by dm(-9 it): X -» T2. T is faithful if /x H» dm(-9 ju) is 
injective, as is the case for all theories so far mentioned, but for none of these 
is TX -> T2X surjective. Call elements of T2X T-propositions on X. Thus explicit 
representation of distributions as propositions follows from more basic axioms, 
but propositions are more general than distributions. In fuzzy set theory, 
dm(-9 jn)(x) = (ii(x)9 ji(x)) where fi(x) = supx¥:yii(y). In probabilistic set 
theory, dm{-9 JLI) is /i itself. Curiously, probabilistic proposition = fuzzy set. 

The generalization of co-unions is immediately at hand, since each co G Tn 
induces the operation (TX)n -> TX9 (/*,•: / G » ) h > a#(co) where a(i) = /x,. Call 
such operations T-operations. The T-extension principle that each ƒ: Xx 

X • • • X Xn -> TY has a unique extension / : TXX X • • • X TXn -* TY which 
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preserves all T-operations in each variable separately characterizes the com­
mutative theories which are so called by virtue of being equivalently char­
acterized by the property that any two T-operations commute with each other. 
All examples mentioned so far are commutative. For commutative theories, the 
image of the extension TX X TY -* T(X X Y) of eXXY constitutes the 'inde­
pendent joint distributions'. This suggests that a distributional set theory 
appropriate for a 'quantum set theory' would not be commutative. 

In contrast to the ad-hoc approach of pp. 160-173, the 'logic of proposi­
tions' is subject to internal development, at least for commutative theories. The 
Boolean operations on 2 extend to T2 and hence, by pointwise operations, to 
each proposition space T2X. In general such operations need not map distribu­
tions to distributions which is hardly surprising since, in crisp set theory, 
Boolean operations do not map singletons to a singleton. For fuzzy set theory, 
the extension of not: 2 -» 2 to [0,1] X [0,1] is (a, b) h-> (Z>, a) whereas in 
probabilistic set theory the extension is [0,1] -> [0,1], a H» 1 — a. This explains 
the earlier claim that 1 — a is more naturally associated with probability 
theory. 

A further aspect of internal development concerns 'equality of distributions'. 
Given /A, /A' E TX, define eq(ju, /A') = dm{-, /A)#(JU') E 77. (For commutative 
theories, eq(ju, /A') = eq(/t', /A).) For possibilistic set theory, interpret the four 
truth values 0, {0}, {1}, 2 respectively as 'undefined', 'no', 'yes', and 'maybe' 
whence eq(^4, A') is undefined if either set is empty and otherwise is no if the 
sets are disjoint, is yes if both equal the same singleton and is otherwise maybe. 
The consistency of two fuzzy sets /A, /A', with universe X has been defined by 
Zadeh (p. 24) as C(/A, JIA') = supJcmin(/A(x), M'(*)), and (p. 25) the separation 
index is defined by 1 — C(/A, /A'). For fuzzy set theory, eq(ju, /A') has true 
coordinate C(/A, /A') but has false coordinate supx^min(ju(x), /A'(J0) which 
would then be seen as the candidate for the separation index from the 
distributional point of view. 

The external development of distributional set theories includes a number of 
simple notions for classification such as crisp points (ex: 1 -* T\ is an isomor­
phism), noise-free (T<j> = </>), antireflexive (eq(ju, /A) = true implies n is crisp) 
and the eigenstate condition (if djx(x9 it) = true then /A = ex(x)). It is a 
theorem that crisp points and consistent implies noise-free. Any theory has a 
largest subtheory with crisp points. For commutative theories, having crisp 
points has two equivalent characterizations, namely (a) the independent joint 
distributions map TX X TY -> T(X X Y) is injective and (b) the equation x 
and 0 = 0 lifts from 2 to T2. 

Still promised from §1 is the concept of a map TX-* X which 'averages 
over' a distribution in a manner consistent with the algebraic structure of T. A 
T-decider is (X, £) where £: TX -» X satisfies the axioms 

(i)&x=idx. 
(ii) Given a,/i:n-* TX with fa = ftB, | a # = &8#. 

The first axiom is eminently reasonable, assuring that the only value allowed to 
represent the point distribution on x is x itself. The second axiom states that f 
of the net distribution induced by w E Tn and /A, E TX (i E n) depends only 
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on co and the K/x,-)- A decider homomorphism ƒ: (X, £) -* (7, 0) is a function/: 
X^Y such that $(Tf)=fe where 7/: 7 T ^ 7 7 = ( e y / ) # . (The Tf con­
struction generalizes the 'fuzzy extension of a nonfuzzy function' of p. 98.) For 
any set X, (TX, id*^) is a T-decider, indeed is the free decider generated by X'm 
that for any T-decider (Y, 0) and any function g: X -» 7, there exists a unique 
decider homomorphism g # : (7X, id*^) -> (Y9 6) with g # e x = g, namely g # = 
0(Tg). The older a # : T^-^ I T is just such an extension, so the notations do 
not clash. 

One class of theories for which the deciders are understood is the class of 
matrix theories over a complete partial semiring [18, Definition 7.4]. Rather 
than elaborate, two examples should suffice. For fuzzy set theory, the complete 
semiring is [0,1] with (infinite) sum = sup and (binary) multiplication = inf. 
Here a: X -> [0, l ] y may be viewed as a matrix with entries in the semiring, X 
indexing columns and Y indexing rows. The composition j3 o « = /3#« is then 
matrix multiplication and ex acts as the identity matrix. Similarly, possibilistic 
set theory is the matrix theory over the two-element complete subsemiring of 
[0,1], {0,1}. For matrix theories, decider = module. In particular, TX — free 
module. This leads one to view an element JU of [0,1]* as the formal linear 
combination 

M= 2 **(*)*• 
xGX 

This is more transparent in the restriction to possibilistic set theory wherein a 
subset is viewed as the union of its singletons. For possibilistic set theory, 
decider = complete semilattice in that if ( X, < ) is a complete semilattice then 
sup: 2X -* X is a decider structure, whereas, conversely, if £: TX -* X is a 
decider then x < y defined by £{x, y) — y defines a complete semilattice 
whose supremum operator is £. In particular, the infimum map 2R+ -» R+ 

needed in §1 is just the decider structure of (R+, >). 

5. By way of conclusion. I hope the reader has not gained the impression that 
all work in fuzzy set theory is without purpose, since much of the work 
reported in the book under review is of obvious use in the engineering sciences, 
regardless of whether or not any 'fuzzy set theory' is involved. The focus of 
this review is on a concern that the mathematical theory advocated by fuzzy set 
theorists is misguided. I do not seriously feel that any one approach such as 
topos theory or distributional set theory is the only way to advance a theory of 
inherently imprecise sets. There is every reason to expect a new generation of 
fuzzy set theorists. For them my advice is: study what other mathematicians 
have done and then build a beautiful theory! 
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In the preface to the 1973 English translation [4] of his 1954 notes on locally 
convex spaces, Grothendieck wrote to the effect that the translation was 
verbatim and that no attempt had been made to update the notes since nothing 
had happened in the theory of locally convex spaces since the appearance of his 
notes twenty years earlier. 

In his 1976 review of the translation, John Horvâth wrote [8] "Even after 
twenty years, Grothendieck's book is an elegant and refreshing introduction to 
topological vector spaces, and in spite of the fact that at least ten monographs 
have been written on the subject since 1954, it is probably the best text book to 
use in a course." 

Horvâth's own book on the subject [9] appeared in 1966! 
Continuing with Horvâth on Grothendieck: "The proofs are at times concise 

or even omitted, but this enhances its value as a text book. An additional 


