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RESEARCH ANNOUNCEMENTS 

NEW EXAMPLES OF MINIMAL IMBEDDINGS 

O F S " - 1 INTO S"(l )—THE 

SPHERICAL BERNSTEIN PROBLEM FOR n = 4, 5, 6 

BY WU-YI HSIANG1 

The classical Bernstein theorem proves that an entire minimal graph in R3 

is necessarily a plane. Analytically speaking, an entire minimal graph inRw + 1 is 
given by an entire solution, u(xl,..., xn) € C2(Rn), of the following minimal 
equation 

Z £>i = 0-
/=i VI + \Du\2 

The Bernstein problem asks whether an entire solution of the above equation is 
necessarily a linear function. The above problem was proved to be affirmative in 
the cases n = 3 by De Giorgi [6], n = 4 by Almgren [1] and n < 7 by Simons 
[9]. In the remaining cases of n > 8, it was settled to be negative by Bombieri, 
De Giorgi and Guisti in 1969 [2]. The study of Bernstein problem is closely re­
lated to that of minimal cones, singularities of minimal hypersurfaces and closed 
rninimal hypersurfaces of the diffeomorphic type of Rn ~ * in En and that of the 
diffeomorphic type of Sn~1 in Sn(l). They are clearly simple testing problems 
of fundamental theoretical importance. For example, the following so-called 
spherical Bernstein problem was proposed by S. S. Chern in 1969 [4] and again in 
his address to International Congress of Mathematicians at Nice, 1970 [5] as an 
outstanding problem in differential geometry. 

SPHERICAL BERNSTEIN PROBLEM. Let the (n - l)-sphere be imbedded 
as a minimal hypersurface in Sn(l). Is it (necessarily) an equator? 

The beginning case of n = 3 was known even before the above problem was 
proposed, namely, a theorem of Almgren [1] and Calabi [3]. So far, no progress 
has been made in the positive direction. We announce here the construction of 
infinitely many distinct new examples of minimal imbeddings of Sn~x into Sn(l) 
for the cases n = 4, 5 and 6. Our construction makes use of the framework of 
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equivariant differential geometry which reduces the analytical problem of non­

linear, parametric nature to a more manageable global problem of ordinary differ­

ential equation. We state the main results as follows 

THE CONSTRUCTION. Let (G, M) = (0(2) x 0(2), S 4 ( l ) ) , (0(3) x 0(3), 

S6(l)) or (50(3), 55(1)) respectively, where G is the orthogonal transformation 

group fixing the north and south poles. Then the orbit space M/G is geometric­

ally a spherical lune which can be conveniently represented by polar coordinate 

(r, 0) as follows 

M/G = {(r, 0); ds2 = dr2 + sin2rd62} 

( 0 < r < 7 r , 0 < 0 < 7r/2 for the first and the second cases, 
where \ 

10 < r < 7T, 0 < 0 < 7T/3 for the third case. 

It is easy to see that the geometry of (G, M) is symmetric with respect to both 
the r-bisector, r = 7r/2, and the 0-bisector, 0 = IT/4 (resp. 0 = ir/6 for the third 
case). Geometrically, the preimage of the r-bisector is the G-invariant equator 
5W""1(1), the preimage of the center point C(the intersection of the two bisec­
tors) is the unique minimal G-orbit and the preimage of the 0-bisector is the sus­
pension of the above minimal G-orbit, which is a minimal hypersurface with singu­
larities at the north and south poles. 

Schematically, one may picture the orbital geometry of (G, M) by the fol­
lowing figure 

Following [7] , one may reduce the analytical problem of finding G-invari­

ant minimal hypersurfaces of certain type in Sn(l), n = 4, 5, 6, by studying the 

geometry of solution curves of a specific nonlinear ODE with singularities. We 
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state the main results of such construction as the following two theorems 

THEOREM 1. To each positive odd integer 2i + 1, there exists a G-invariant, 
minimal imbedding of Sn~l into (G, Sn(l)) (for the above three cases) whose 
image-curve y = Sn~1/G is central symmetric with respect to the center point C 
and intersects with the 6-bisector at exactly 2i 4- 1 points. 

Next let Nbe S2 x SX,S3 x S2 or the double of the mapping cylinder of 
SO(3)/&2 ~^RP2 for the case (0(2) x 0(2), S4(l)), (0(3) x 0(3), S6(l)) or 
(SO(3)9 S

5(l)) respectively. 

THEOREM 2. To each positive even integer 2i, there exists a G-invariant, 
minimal imbedding of N into (G, Sn(l)) whose image-curve y = N/G is reflectional 
symmetric with respect to the r-bisector and intersects with the 6-bisector at 
exactly 2i points. 

As i —• °°, the image curves of both Theorems 1 and 2 converge uniformly 
to the 0-bisector. Therefore, their corresponding minimal hypersurfaces converge 
to the suspension of minimal G-orbit as limit. 

The proofs of the above two theorems and further discussion of the signi­
ficance of such examples will be published elsewhere. 
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