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INVERSION OF ABELIAN INTEGRALS1 

BY GEORGE KEMPF2 

0. Introduction. There are naturally occurring bundles over the Jacobian 
variety of a compact Riemann surface. These Picard bundles are involved in 
an essential way in many global problems about the Jacobian. Unfortunately, 
we have no good description of these bundles other than an equivalent 
formulation of their definition. Their nonabelian nature seems to present a 
major obstacle to giving a rigid description of them. The problem of finding 
an alternate description of these Picard bundles is what I call an inversion 
problem. 

My main objective in this paper is to describe some possible ways of 
solving the inversion problem and report on the partial results in these 
directions. Some interesting properties of the Picard bundles will also be 
indicated. Further research on these inversion problems is clearly required. 
Their solutions would lead to a more explicit theory of Riemann surfaces. 
Even good methods of finessing their solutions would be an important 
advance in this fundamental region of algebraic geometry. 

1. Abelian integrals. Let S be a compact Riemann surface which has genus 
g. Topologically S is just the surface of a doughnut with g holes. The 
cohomology group H l(S, Z) is a free Abelian group of rank 2g, which has a 
unimodular alternating pairing given by intersection. 

Let o) be an Abelian differential on S. We may regard <o as a global section 
of the sheaf tis of holomorphic one-forms on S. Thus co locally has the form 
df, where ƒ is a holomorphic function. Globally the indefinite integral ƒco is a 
multivalued function, which is locally holomorphic and only determined up 
to adding a constant of integration. 

Usually one analyzes the multivaluedness of these integrals as follows. Let / 
be a fixed point on S. For any path o from t to a variable point s9 the definite 
integral Ja<o is locally a holomorphic function of its endpoint s and is a linear 
function of <o. Furthermore, for any other choice of the path, say T, we have 
fro) = Jaco + JToa-ito, where /Toa-i<o is called the period of w around the 
closed path r ° a~l. As linear functional, we have 

hhS • 
Jr J a •'closed path 
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To eliminate the multivaluedness of the integral JJco, which is due to the 
choice of path from t to s, one interprets this expression as defining an 
analytic mapping, 

r:s->r(s,os)
dual/L-/, 

where L is the subgroup of linear functional on the space of abelian 
differentials, which are gotten by integrating around closed paths in S. The 
space V = T(S, tis)

dual is a complex vector space of dimension g. The 
subgroup L is a lattice in V. It is called the period lattice and is naturally 
isomorphic to Hl(S,Z). The quotient / = V/L is called the Jacobian 
variety. It is a compact analytic group of dimension g. 

Similarly, for any positive integer /, the Abelian sum 

f *<o + • • • + f 'co = f(sx + • • • +J /)(O>) 

defines an analytic mapping 

f : S(0 = (S X • • • XS) //permutations of the factors -» J, 
J it i times 

where 5,(,) is a complex manifold of dimension i, which is called the ith 
symmetric of S. 

For the remainder of this paper, I will require that / > 2g — 2 = 
degree(£25). In this case, the Abelian sum mapping has a very remarkable 
property. 

THEOREM 1. The integral fit: 5 , ( / )->y is a locally trivial bundle of projective 
spaces P ~ g . 

In the classical theory one may easily write such local trivializations via 
Riemann's theta function. The global problem of describing how this bundle 
is twisted up will be called an inversion problem. These problems naturally 
arise when one tries in some sense to invert the Abelian sum mapping. They 
arise as part of the general philosophy of inversion where one tries to control 
aspects of the Riemann surface in terms of the Jacobian with some auxiliary 
structures. This philosophy of inversion was decisively applied by Abel when 
g = 1 and one would like to have a better inversion theory when g > 2. 

2. An analytic inversion problem. This type of inversion problem asks 
whether one may imitate the procedure which Riemann used to describe the 
theta divisor on the Jacobian / by finding a theta function on the covering 
space V. In his case this theta function is determined up to constant multiple 
by the multipliers {et} in the functional equations, 0{v + /) = e^Oiv) for / 
in L, which it satisfies. In Riemann's case, these multipliers are much more 
elementary functions than 0 itself. Next I will explain in some detail how a 
solution to this analytic inversion problem should look. 

Given any bundle s: T-+J over the Jacobian, we may form the induced 
bundle s : T -> V over the universal covering space V of / . Furthermore the 
lattice L acts naturally on T such that s is L-equivariant and the induced 
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mapping s/L: f/L-> V/L is naturally identified with s. Explicitly, if 7r: 
V-+J is the quotient homomorphism, f = {(/, v) G T X K|$0) = 7r(t>)}, 
£(7, t?) = v and /*(/, D) = (7, / + v) for / in L. Thus to describe a bundle over 
J we have to give an L-equivariant bundle over V. 

The simplest L-equivariant bundles s: T-+V are trivial as bundles but 
have an interesting L-action. In this case, we have an isomorphism (or 
trivialization) p: F X V^>f such that s(p(f, v)) = v for all (ƒ, v) in F X K. 
In terms of this trivialization, the L-action on T has the form 

/*(ƒ, t>) = U/(/> «), v + /) for (/, ƒ, D) in L X F X K, 

where the mapping &: F X V -> F gives an isomorphism e,(t>) of the fiber F 
for each / and v. Thus our action is given by 

(*) M/,») -(«,(»)(/), » + /). 
For these multipliers ^ (F) to give a group action, they must satisfy the 

identities, 

(**) et'+i(v) = er(v + /) ° e/(t?) for all / and /r in L, 

where the circle ° denotes the composition of automorphisms of ƒ. A system 
of multipliers {e^v)} satisfying (**) are called factors of automorphy. 

Now, if we use the fact that L is a free abelian group with generators 
/ j , . . . , l2g, the above L-action is determined by the transformations of T 
given by the generators subject to the sole condition that these transforma­
tions commute. In terms of multipliers, let /(t>) = elf(v) for 1 < / < 2g. These 
special multipliers satisfy the commutativity conditions, 

(***) ft(v + Ij) o fj(v) = fj(v + /,) o f.(v) for 1 < i <j < 2g. 

Conversely, given such 2g multipliers satisfying these g(2g — 1) equations 
(***), one may easily recover all the multipliers et(v) by using equation (**) 
and these e^v) will be factors of automorphy. 

With thesç general remarks out of the way, we can state 

THEOREM 1. The bundle fit: S® —> «/ ofP'~g9s induces a complex-analytically 
trivial bundle over V. Hence it can be described by factors of automorphy 
{et{v)\l G L}, which are complex analytic functions on V with values in the 
projective general linear group, Aut(P ,_g). 

This theorem [2, 4] may be proven using general methods of Grauert, but 
there is no known way to construct such a trivialization explicitly. 

Problem. Pick out some particular trivialization and compute the multi­
pliers. 

To find such a trivialization one would like to restrict one's choice. One 
possible condition, that one could require, is a variation on one of Riemann's 
themes. Assume that ll9 . . . , l2g is a basis of L such that the intersection 
numbers [/, : lf\ = 0 unless i + j = 2g + 1. As ll9 . . . , lg are a complex basis 
for K, we may identify V with Cg so that lx = (1> 0, . . . , 0), . . . , lg = 
(0, . . . , 0, 1). 
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With this notation, the possible condition is contained in 

THEOREM 2. We may choose the trivialization of Theorem 1 so that the 
multipliers f(v) are the identity for g < i < 2g. 

The proof [5, 3] of this theorem uses the periods of Prym differentials and it 
gives an explicit trivialization in some neighborhood of Rg in Cg. 

If one uses a trivialization as in Theorem 2, the bundle S^-^>J is 
determined by the g multipliers fx(x),. . . 9fg(x) subject only to the condi­
tions: 

(a) they are entire functions on Cg with values in Aut(P/~g); 
(b) they are g-tuplely periodic with respect to the integral vectors in Cg; 

and 
(c) they satisfy the g(g — l ) /2 commutativity relations (***) for 1 < i <j 

<g. 
REMARK 1. The simplest unknown case is when g — 2 and / = 3. In this 

case, one wants to find two doubly periodic functions fx and f2 on C2 with 
values in Aut(P1) satisfying only one commutativity relation. Even here I 
have had trouble finding nontrivial solutions to this relation. 

REMARK 2. The above desired trivializations depend on the choice of a 
canonical basis of the lattice L. One may hope to have some simple rule for 
passing between such trivializations for two different choices of canonical 
bases. Furthermore one would like to understand the dependence of such 
trivializations on the choice of the "fixed" point t of S. 

3. Linearization of the inversion problem. Instead of working with the 
projective bundles ƒ,,: S( , ) -> J given by integration, one constructs complex 
analytic vector bundles W, —» J over the Jacobian so that ƒ it is the projective 
bundle of lines in the fibers of W,. The vector bundles W, are called Picard 
bundles. 

The Picard bundles may be described by giving the sheaf %t of the 
analytic sections of W,. These Picard Sheaves %t are locally free 07-modules 
of rank i - g + 1 on the Jacobian / . Explicitly, one may define %t as the 
dual sheaf to the direct image sheaf (/l7)jS1s<o(S'(,'"~1) + /)] o n «A where 
•S*'-1* + t is the divisor on S( l) which consists of divisors on S containing the 
fixed point /. This construction works because S ( l - 1 ) + t intersects a fiber of 
j i t in a hyperplane section. One should note that the dual Picard bundle Wf 
has a canonical section corresponding to (ƒ„)„, (constant function 1). 

In this context, we may ask for a solution of the linearized inversion 
Problem. Describe the Picard bundles W, -> / by factors of automorphy in 

GL(i - g + 1, C) = Aut(A'~s+1). 
In this situation the analogous versions of Theorems 1 and 2 still hold. In 

this linear version, the multipliers ƒ^x) , . . . , fg(x) are matrices whose coeffi­
cients are entire functions. One may hope to choose them as to satisfy the 
additional conditions: 

(d) the coefficients of the multipliers are first order entire functions on V; 
and 

(e) the canonical section of Wf in terms of the trivialization is given by a 
(/ — g + l)-vector of first order entire functions. 
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In the 1960's, A. Mattuck [10, 11] studied how the bundles ƒ,,: S(i)->J 
were twisted up. His most significant results were the determination of the 
Chern classes of Picard sheaves ^ in the Chow ring of rational 
equivalence classes of cycles on / . Also Schwarzenberger [16] and Macdonald 
[9] made contributions to this subject. During this period the subject became 
interlaced with Grothendieck's general theory of Picard schemes [1, 12], but 
the basic inversion problems about curves were somewhat ignored. In the rest 
of this section, I want to give a sample of the above mathematicians' 
viewpoints. 

First recall that, by Abel's theorem and its converse, the fibers of the 
Abelian integral ƒ„: S ( 0-».7 are complete linear systems of divisors. Thus, 
for two effective divisors Dx and D2 on S of degree /, jit(Dx) = fu(T>2) if and 
only if the invertible sheaves 6S(DX) and 6S(D2) on S are isomorphic. In 
other words, for each point j of / , there is an invertible sheaf £y on S such 
that the fiber (fit)~

l(j) *s isomorphic to the projective space of lines in the 
vector space T(S, £y). 

Globally we may form an invertible sheaf £ on the product S X J such 
that, for each pointy of / , t\SxJ is isomorphic to the previous sheaf £y. This 
sheaf £ is uniquely determined by this provided we require an isomorphism 
£ | , x y ^ 0 y . Classically Riemann could easily describe £ using his theta 
function. In Grothendieck's rendition, £ is a family of invertible sheaves of 
degree / on S parameterized by / , which is characterized by a universal 
mapping property. 

The global version of Abel's theorem and its converse may now be simply 
stated as 

THEOREM 3. The Picard sheaf %t is isomorphic to the direct image (projy)J|t£ 
of £ by the projection of S X J onto J. 

One possible use of this theorem is that it gives a direct relationship 
between global properties of the Picard sheaf %f and those of the sheaf £ on 
the product S X J. The main advantage is that one may study global 
properties of £ by means of its projection on the other factor S. This 
approach is a variation on the theme entitled "divisorial correspondences". 

Lastly I want to mention the most accessible special case of Mattuck's 
results concerning the Chern classes of Picard sheaves. This particular result 
is equivalent to the determination of their first Chern class. 

THEOREM 4. The invertible sheaf Ai~8+l6l}Si is isomorphic to 0/(-0), where 
the theta divisor $ is the image of the Abelian integral f(g-\)r S , ( g - 1 ) -> / . 

This result shows how the above inversion problems are direct generaliza­
tions of the problem which Riemann solved in determining the factors of 
automorphy in the functional equation for the theta function. In fact, the 
functional equation of the theta function describes how the sheaf 0y(-0) is 
twisted up. 

4. Encouraging results. When one contemplates the linear inversion prob­
lem, one realizes that one is required to pick out a particular locally free sheaf 
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<% on the Jacobian variety / . To do this, one would have to be able to 
distinguish a Picard sheaf W,- from all nearby locally free sheaves. 

For most curves, I was able to show the encouraging result that any sheaf 
near to <% is a trivial modification of ^ itself. Explicitly, consider the 
obvious family of locally free sheaves on 7, 

%(%) = (translation byj)*% ® (invertible sheaf on J) 

where j is a point of 7. This gives a family of locally free sheaves on J 
parameterized by ƒ X Pic(J), which contains all trivial modifications of %r 

The remarkable result about this family is that usually it irredundantly yields 
all nearby deformations of each of its members. The exact statement is 
contained in 

THEOREM 5. If S is a nonhyperelliptic Riemann surface of genus > 2, then the 
family ^(W,-) gives a complete family of deformations of each of its members. 
Furthermore the members of this family are all distinct. 

The proof of this result uses correspondence techniques and may be found 
in [6]. In particular, the theorem shows that the space Hl(J, Hom(W/, %$ 
of infinitesimal deformations of <% has dimension 2g. This contrasts strongly 
with the classical case g = 1 where this dimension is g. Furthermore, Gun­
ning [3, 6] has shown that the space / /%/, Hom(%, % ) ) is always one 
dimensional. Consequently the Picard sheaves <% are indecomposable and 
not easily confused with themselves in strange ways. 

Continuing with the assumption that S is nonhyperelliptic of genus > 2, I 
have been able to show some related results using correspondence methods 
on symmetric products [8]. 

THEOREM 6. (a) For any positive integer n, all deformations of the symmetric 
product S(w) are induced in a unique way by a deformation of S. 

(b) The bundle ƒit\ S® -> J extends over a given deformation of J if and only 
if the deformation of J is the deformation of the Jacobian induced by a 
deformation of S. In this case, the only possible such extensions are the obvious 
ones. 

An interesting aspect of this last result is that it is related to the Schottky 
problem of characterizing Jacobians among all principally polarized Abelian 
varieties. In fact, in a neighborhood of our Jacobian J in Siegel's upper 
half-plane, the locus f of Jacobians is characterized by the existence of a 
lifting of the bundle fit: S(r> -» / to f. Thus a better understanding of Picard 
type bundles on Abelian varieties may throw some light on the classical 
problem of characterizing the Riemann matrices of Riemann surfaces. 

REMARK 3. Recently in an unpublished work, X. Gomez-Mont and, also, S. 
Mukai have made contributions to these topics (especially in the direction of 
removing the above restrictions on the Riemann surface S). 

5. An algebraic inversion problem. One might hope to say something 
significant about the Picard sheaves 6l£i by using the methods of algebraic 
geometry. In general, any coherent sheaf on a projective variety may be 
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described by a finitely generated graded module over a graded ring. In our 
case, the theta divisor 0 (or a translate of it) is an ample divisor on the 
Jacobian / . Thus J = Proj(^f) where A is the graded ring A = 
0 T(/, 0,070)). Furthermore %t is the sheaf on J associated to the 
graded ,4-module hft = @n>Q T(J, %(n0)). 

This leads one to ask for a solution of the following algebraic inversion. 
Problem. Determine explicitly the structure of the A -modules Mt. 
In the classical theory, the ring A has been carefully studied. For instance, 

it is well known [14] that, for any positive integer n, 

dimçO/, ©,(*»)) = ng and HJ(J, Qj(nB)) = 0 if/ > 0. 

In [7], I have proven the analogous result for the module Mt\ 

THEOREM 7. If n(i - 2g + 2) > g, 

dime r ( / , %(n0)) = (/ - g + l)n* - gn8~l 

and 

HJ(J, %(n$)) = 0 Jorj > 0. 

Much is known about the algebra of the rings A [13]. One hopes to be able 
to understand the defining relations between generators of the modules M,. 
Using Mumford's "Castelnuovo type" techniques [15] together with Theorem 
7, one can give some bounds on the degrees for generators and relations for 
the modules A/,, but the above inversion problem asks for more details than 
are presently known. 

Lastly, I want to mention informally another result. Using correspondence 
techniques in [7], I have given isomorphisms between the graded components 
T(/, ^iiS^nB)) of the modules Mt and the space of sections of some definite 
sheaves over Abelian coverings of S. I hope this isomorphism will help lead to 
a solution of the algebraic inversion problem. 
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