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1. Introduction. The decomposition of tensor fields into canonical forms 
arises as an important step in many problems of mathematics and physics. 
The classical Helmholtz decomposition (divergence free plus gradient) arises 
in fluid mechanics and electromagnetism. The Hodge-Kodaira decomposition 
and its generalizations is an important area of mathematical study. More 
recently various decompositions of 2-tensors have arisen in the study of 
general relativity [6, 16, 30]. There have also been applications in differential 
geometry [4,15,17] and symplectic structures [3]. 

There are, of course, classical methods for the study of some decomposi
tions. These involve the treatment of a single tensor (or vector) field. This is 
inadequate for most applications. Often one needs to split entire spaces of 
tensor fields. 

The reason for this is that the desired decomposition usually is a lineariza
tion of a nonlinear problem. Let us give a simple example. 

The configuration space for the dynamics of an incompressible fluid on a 
Riemannian manifold (Af, g) is the space of volume-preserving diffeomor-
phisms ^ on M. (Here /A is the canonical volume form determined by the 
metric g.) For more details see [21]. <§ (M) is properly thought of as a 
constraint space in the set of all diffeomorphisms of M. The Euler or 
Naviar- Stokes equations yield vector fields on D̂ . Thus a natural question 
is whether D̂ is a submanifold. The principal tool for studying such a 
question is the implicit function theorem for Banach spaces. 
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IMPLICIT FUNCTION THEOREM. Let O: Bx-> B2be a C1 map between Banach 
manifolds. Then for q E B2, the set S = {p E Bx: $(p) = q} is a submanifold 
of Bx if f or every p E § 

(1) Tp&: TpBx -> TqB2 is a surjection, 
(2) TpBx = ker(T^S) 0 9C where % is closed. 
Furthermore TpS = ker(Tp$). 

See [19] for the proof of this theorem. 
Note condition (2) is necessary. Thus a first step in studying fluid flow is 

determining whether the splitting given by condition (2) holds. As we shall see 
this entails the Helmholtz decomposition. 

In order to apply the implicit function theorem one must work in a Banach 
manifold. The usual choice is 6$>,s, the diffeomorphisms of class Wp,s (or 
Hs = W2,s) for s > n/p + 1. In this case 6D/M may be shown to be a 
manifold (see Marsden [21]). For ƒ E ty1*'3 denote by ƒ*( JU) the usual action 
off on ix (see [1]). Let <E>: ^ -* Wp>s-\AnM) take/ to /*(/x) and ^ = {ƒ: 
*(ƒ) = Mi-

Let / E ojjj' be the identity map on M. Then r , 0 ^ = WP\TM\ the 
vector fields on M of class W "̂*. Calculation yields Tp$(Vp) = divgï^jw where 
divg is the divergence associated with g. Thus condition (2) becomes 

(1) Wp*(TM) = ker(divg) 0 % 

where % is closed. Hubert space theory suggests that we write % as the range 
of the adjoint of div^. Even though we are using Wp>s we use the formal or L2 

adjoint. Thus the decomposition of interest is 

(2) Wp>\ TM) = Vg(( W
p>s+l)( TM)) 0 ker(divg) 

where Vg is the gradient operator associated with g. Further we require the 
range of Vg to be closed. As we shall show (2) always holds for p > 1 when 
M is compact. The noncompact (asymptotically Euclidean) case is also 
treated in some detail. 

The decomposition (2) is a prototype of the sorts of decompositions that 
arise in most problems. We will study decompositions of the form B = 
Rng(Z)) 0 ker(is) where B is some Banach space of sections and D and E are 
differential operators. Usually D or E has surjective symbol and E is the 
formal adjoint of D. 

In this paper a general framework for the study of such decompositions is 
given. Although for over a century there has been research on specific 
decompositions (see for example [18a]), there has not been much work on the 
general problem. One important paper giving a general theory is by Berger 
and Ebin [4]. They study the problem of splitting Hs spaces of sections over 
compact manifolds with respect to elliptic operators. The earlier work in the 
field centers around the problem of decomposing alternating /c-forms over 
compact manifolds. This was studied by Hodge [18b] and Kodaira [18c] in the 
thirties. Their work was extended by Morrey and Eells [23a, 23b]. All these 
authors studied the Hodge decomposition of Wp,k forms over compact 
manifolds using a variational method. A different proof of this decomposition 
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is given in the paper. (Morrey also studied the case of manifolds with 
boundary.) 

In this paper a general procedure for deciding when decompositions hold is 
given in §2. This is used in §§3 and 4 to state and prove a general 
decomposition theorem for Sobolev spaces of sections over compact mani
folds. These results are an extension of the earlier work of Berger and Ebin 
mentioned above. Also the proof is somewhat simplified. Along the way (§3) 
a proof of the Fredholm alternative for elliptic opeators on Sobolev spaces 
over compact manifolds is given. For p = 2, this is a special case of some 
work of Kohn and Nirenberg [18d]. We know of no published source for this 
theorem for general/?. 

It is shown in §5 that the usual decomposition theorems fail for Sobolev 
spaces of tensors over R". The problem is that Sobolev spaces capture the 
local smoothness conditions necessary to invert the appropriate elliptic opera
tors but fail to capture the correct growth at infinity behavior for solutions to 
potential type equations. The author [11] showed that some inequalities due 
to Nirenberg and Walker [24] implied that the Laplacian was an isomorphism 
between certain pairs of weighted Sobolev spaces. This result was generalized 
to operators with nonconstant coefficients in a later article [10]. Also in that 
article, some decompositions were demonstrated for fields with respect to 
asymptotically euclidean metrics over Rn. There has been further work on the 
properties of elliptic operators on these spaces. The main result, due to 
McOwen [21, 23] (see also Lockhardt [20]) is that the previous results 
generalize to spaces with more general weights at infinity. He showed in this 
case the operators were Fredholm. He also showed the restrictions on p 
required in the earlier papers were unnecessary. (See the definition of M?d 

spaces below.) His results (for p = 2) were extended to a slightly larger class 
of operators and to manifolds by Christodoulou and Choquet-Bruhat [14] (see 
also Cantor and Brill [12]). They did find some elegant lemmas involving the 
product structure of the weighted spaces. In §§5-7 all of this work is brought 
together and generalized to spaces of sections with general p over noncom-
pact manifolds. Many of the theorems are new. In particular necessary and 
sufficient conditions on the "growth at infinity" are given for particular 
tensor decompositions to hold. 

The weighted Sobolev spaces are introduced and studied in §5. Some rather 
delicate multiplication and growth theorems are presented. §6 contains a 
rather general treatment of the elliptic theory on Rn. 

In §7 the work in §6 is generalized to asymptotically euclidean manifolds. 
Throughout we assume the reader knows elementary functional analysis. 

For §§3, 4 and 7 we assume the reader is familiar with the language of tensor 
bundles and spaces of sections. (This material may be found in [19,1].) 

§§5 and 6 may be read separately and simply assume some familiarity with 
partial differential equations. 

We will use standard multi-index notation (except in some parts of §5 
where, for convenience, total derivatives are used). Throughout large con
stants are denoted by C. The Lp norm is given as | 1̂ , and the sup norm is 
denoted by || ||. 
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2. Splittings of Banach spaces. In this section we present the fundamental 
lemma for verifying all decomposition theorems of the form 

X = T(Y)®ker(S) 

where S and T are bounded linear transformations between Banach spaces. 

LEMMA 2.1. Let T: X —» Y be a bounded linear transformation between 
Banach spaces. Suppose Y = T(X) 0 Z algebraically where Z is closed. Then 
T(X) is closed. 

This lemma may be found in [26] but we will include the proof. 
PROOF. Since ker(T) is closed in X, we may construct the Banach space 

W = * / k e r ( r ) and f: W^ Y such that f{W) = T(X) and f is an injec
tion. Also T is bounded. 

We may also construct the Banach space W^ Z (by assumption Z is a 
Banach space). The transformation S(w, z) = T(w) + z is easily seen to be 
an isomorphism between W 0 Z and Y. By the open mapping theorem, S is 
a closed map. Thus T(X) = {S(w9 0): w E W) is closed. Q.E.D. 

LEMMA 2.2. Let T: X-+Y and S: Y-+Z be bounded linear operators 
between Banach spaces. Then the following are equivalent: 

(1) ker(S o T) = ker(r) and Rng(5* o T) = Rng(S). 
(2) 7 = Rng( r )0ker (S) . 
Furthermore in case (1) and (2) holds, then Rng(T) is closed in Y. 

PROOF. We first show (2) implies (1). Clearly ker(T) c ker(S o T). So let 
x E ker(S o T). Then T(x) E Rng(T) n ker(S). Thus from (2) we may con
clude that T(x) = 0 and so x E ker(T). 

It is also clear that Rng(S ° T) c Rng(S). To show Rng(S) c Rng(5 ° T) 
let z = S(y). Then using (2) we may write y = T(x) + j where (J) = 0. 
Hence z = S(y) = S(T(x)). 

We now show (1) implies (2). Let j> E Y. By assumption there is an x E X 
such that (S ° T)(x) = S(y). We may write y = T(x) + (y - T(x)). Note 
S(y - T(x)) = 0 and so we may write Y = Rng(T) + ker(S). 

Now suppose y E Rng(T) n ker(S). Then y = T(x) for some x E X and 
SO) = (S ° ^T)0) = 0. Thus x E ker(S o T). But by assumption then x E 
ker(T) and soy = T(x) = 0. 

To complete the proof simply note ker(S) is closed in Y and apply Lemma 
2.1. Q.E.D. 

It is interesting to note that condition (1) is sufficient along with the 
continuity of S and T to guarantee that T has closed range. No further 
topological assumptions are required. 

3. The Fredholm alternative for differential operators over compact mani
folds. Let M be a fixed compact n -manifold. Let E and F be two smooth 
vector bundles over M. Also assume each bundle has a Riemannian structure 
(i.e. a smoothly varying inner product on each fiber). A standard example of 
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such a bundle is a tensor bundle over a Riemannian manifold (M, g). Each 
tensor bundle has a Riemannian structure induced by g (see [1]). 

Without loss of generality we may assume M has a given volume form JU. 
With this structure the Sobolev spaces of sections WPy\E) and WP,S(F) 

may be defined for s G N and p > 1. One approach is to construct a 
Riemannian connection for each bundle and to define for ƒ E C°°(£) (for 
example), 

(3) l/U= 2 (ƒ <v«/, vy//2)17' 

where < , ) £ is the appropriate inner product induced by the metric structure 
on E. Then Wp,s is the completion on Cco(E) with respect to | | . 

Another approach is to pick a finite trivializing cover for E. Then define 
the | | norm in terms of these coordinate charts. This is independent of the 
choice of cover. See [25] for details. 

As usual we define the topological dual of WPyS to be Wp,~s where 
\/p + \/p' = 1. The norm topology induces a natural norm on Wp'~s. We 
will denote this as well by | \p, _s. 

An important property of Sobolev spaces is the following. 

THEOREM 3.1 (RELLICH-KONDRASOV COMPACTNESS THEOREM). Let E be a 

vector bundle with a smooth Finsler structure {i.e. a norm defined on each fiber) 
over a compact manifold M. Then if p > 1, sx <s2, WPySx(E) is embedded 
compactly in WP'S2(E). 

For a proof see [25]. 
The theorem fails generally if M is not compact. 

THEOREM 3.2 (SOBOLEV EMBEDDING THEOREM). Let s > n/p + k then 
WP>S(E) c Ck(E) continuously. 

The following theorems may also be found in [25], 

THEOREM 3.3. Let " X " denote any bilinear map. Then 
1. Pointwise application of X induces a continuous map from W1*'** X WPyh to 

Lp iftx + t2>n/p. 
2. Let s > n/p and 0 < / < s then pointwise application of X induces a 

continuous map from Wp's X Wp>' -> Wp,t. 

The above theorem works over Rn as well as compact manifolds. In fact a 
stronger version is proven in §5. 

There is the notion of a differential operator D: C°°(E) -» C°(F). (We do 
not require the coefficients to be C°°.) An invariant discussion of differential 
operators may be found in [25] or [26]. However it suffices to use trivializing 
covers for E and F. In this way D may locally be expressed as a differential 
operator from C°°(U, Rm') to C°(U, R"2) where mx and m2 are the dimen
sions of the fibers of E and F, respectively, and U is open in Rn. The order of 
D is a coordinate invariant. A linear operator of order k has the local 
expression D = ^\a\<k aaD

a where each coefficient aa(p): (RWl)-*Rm2 is 
linear for each;? G M. 
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If D: C°°(E)-> C°(F) is of order k and has sufficiently smooth coeffi
cients then by closure D extends to an operator from WP'S(E) to Wp,s~k(F). 
We may also define the formal adjoint Z)*: C°°CF)-» C°(E) so that for all 
e G C°°(E) and ƒ G C°°(F) we have 

(4) [ <DeJ}F dp-f <e, D*(f)}E dp. 

Of course, D* also extends to WP,S(F) for each appropriate p and s. The 
defining relation (4) holds whenever the integrals are defined. 

For any differential operator D there is a map o called the symbol of D 
which associates to each cotangent vector t G T*(M) linear map ot: Ep-* Fs. 
Also ot(D*) = (ot(D))*9 using the Riemannian structures on E and F. 

DEFINITION 3.4. We say a differential operator D has infective (resp. 
surjective) symbol if a,(£) is injective (resp. surjective) for all nonzero t. D is 
called elliptic if ot{D) is an isomorphism for each nonzero t. 

Note that if coordinates are used then the definitions of 'symbol' and 
'elliptic' reduce to those usually given in partial differential equations texts. 

The following is immediate from the definition: 

PROPOSITION 3.5. If D is a differential operator with infective symbol, then 
D*D is elliptic. 

THEOREM 3.6 (A PRIORI ESTIMATE). Let D be an elliptic operator of order m. 
Suppose locally D = 2 ( a | < m aaD

a where each aa G WPtSw with sk > n/p + h 
— m + 1 and sk> s — m for some s G Z. Then there is a C > 0 depending on 
s, p and D such that 

I/I,, < C(\Df\„-m + \A) 
for all f G Lp such that Df G Wp>s~m. 

This sort of estimate is standard for operators with smooth coefficients over 
regions in Rn [2, 18]. Also the extension of this sort of estimate to operators 
with smooth coefficients over compact manifolds is found in [26]. The 
extension to operators with coefficients in Wp,sw is due to Choquet-Bruhat 
and Christodoulou [13]. 

We will prove some important consequences of these elementary theorems. 

THEOREM 3.7. Suppose D is an elliptic operator whose coefficients satisfy the 
hypotheses of Theorem 3.6. Then iff G Lp and D(f) G Lp then f G Wp's. 

COROLLARY 1. The kernel of D in Wp,t is independent of t for t < s. 

COROLLARY 2. If s > n/p + [i then the kernel of D in Lp consists of CM 

functions. 

THEOREM 3.8. Let D be an elliptic operator satisfying the hypotheses of 
Theorem 3.6. Then the kernel of D in Lp is finite dimensional. 

PROOF. We cite a well-known result of functional analysis that a Banach 
space B is finite dimensional if and only if the unit sphere in B is compact. 
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So let ƒ be a sequence in ker(D) c Lp such that \f\p = 1. Using Theorem 
3.5 we may conclude that 

U U < c(/>>s + *)UU 
( 5 ) < C(p, s + k)\f\p < C(p, s + *). 

Thus {f} is bounded in Wp,m. It follows from the Rellich-Kondrasov 
theorem that f has a convergent subsequence in Lp. Thus every sequence in 
the unit sphere in ker(D) has a convergent subsequence. Q.E.D. 

THEOREM 3.9. Le/ p > \9 s > m and D be an elliptic operator of order m 
whose coefficients satisfy the hypotheses of Theorem 3.6. Then D(WP,S) is closed 
in Wp>s-m. 

PROOF. We may write WPiS as Wp*s = ker(D) 0 K where K is closed in 
Wp,s. This is true since ker(D) is finite dimensional. Note a(k) = a(Wp,s). 

CLAIM. There is a constant C such that \f\p>s < C\D{f)\PyS_m for all ƒ G K. 
If the claim does not hold there is a sequence {f]} c K such that \ft\PtS = 1 

and Z)(^)-»0 in Wp,s~k. It follows from Theorem 3.1 that by passing to a 
subsequence we may assume {f \) is Cauchy in Lp. Clearly {D(f.)} is Cauchy. 
Thus from Theorem 3.6 we conclude {ƒ•} is Cauchy in Wp's. Hence f 
converges to ƒ in K. By continuity D{f) = 0, and \f\p>s = 1. However, this is 
impossible since ker(D) n K = {0}. 

To complete the proof let gt be a convergent (hence Cauchy) sequence in 
D{Wps). Let f G K be such that D{f) = gt. It follows from the claim that f 
is Cauchy in K. Hence f converges to ƒ in K. By continuity D(f) converges to 
D(f) = limCg,.). Hence the limit of & G D{Wps). Q.E.D. 

Let us now recall an elementary result of functional analysis. 

THEOREM 3.10. Let T: X -^ Y be a bounded linear transformation between 
reflexive Banach spaces. Suppose T has closed range. Then for the adjoint of T, 
T*: Y* -> X* we have ker(T)x = T*(Y*). Also the range of T* is closed and 
so kerCr*)-1 = T(X). 

For a proof of this see [31]. 
An immediate consequence of the preceding is the following theorem. 

THEOREM 3.11. Let p > 1, s > m and D an elliptic operator satisfying the 
hypotheses of Theorem 3.6. Then 

D{Wps) = [ / e wp's~m: j(fli)d\i = Ofor all/i G Lp\ D*{h) = o j . 

PROOF. We first check the case when m = s. It follows from 3.9 and 3.10 
that D(Wpm) = kerCD*)-1 since (Z/)* = Lp' and the dual of D is exactly D*. 

If s > m, then clearly for ƒ G Wp>\ ƒ </>(ƒ), h}dii = 0 for D*(h) = 0, 
h G Lp'. Suppose g G Wp>s~m and ƒ ghdfi = 0 for all h G / / such that 
D*(h) = 0. Then g = !)(ƒ) for some ƒ G H^'"\ However 

(6) |/|„ < C(\Df\„_m + |4 ) < C(|g|̂ _m + |4) . 
Hence g G Z)( W J ) - Q.E.D. 
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It turns out that Theorem 3.11 is the one that generalizes in a natural way 
to the noncompact setting. However if the coefficients of D are assumd to be 
sufficiently smooth then a more elegant theorem is possible. 

THEOREM 3.12. Let p > 1, m an even positive number, s > n/p + m and D 
an elliptic operator satisfying the hypotheses of Theorem 3.6. Then if m < t < s 
we have for D: Wp>' -> Wp^m, 

Furthermore the range of D is closed and the summands are L2 orthogonal. 

PROOF. Using the local formula for D* (ignoring metric coefficients which 
are C00), we find 

D*(g)~ 2 (-i)H0"M.s) - 2 (- i)HS(f)^a-V^V 
\a\<m \a\<m 0 < a v a / 

The coefficient of D^g belongs to Wp,t where t > n/p + \a\ — m + I — 
(\a\ — \fi\) = n/p + |/?| — m + 1. Thus the hypotheses of Theorem 3.6 are 
satisfied for D* as an operator on Wp,s~m. Since s - m > n/ph G ker(D*) c 
jyp,s-m t h e n ƒ ^ J^J9 hydli i s a bounded operator on Wp4~m (see Theorem 
3.4). Since ker(D*) is finite dimensional in Wp,s~m (see Theorem 3.8) repeated 
application of the Hahn-Banach Theorem tells us that we may write 

WP,s-m = k e r (p* ) e j ƒ e Wp*~m\ ƒ (fh) = 0 for all h G ker(£>*)]. 

Using the previous theorem and part 1 (above) we see the second summand is 
D{Wps). Q.E.D. 

COROLLARY. If g e Wp^m, then D(f) = g has a solution f G Wp>' iff 

f (h, g} du = 0 for all f G ker(Z)*) c Wp>s~m. 
J M 

THEOREM 3.13. Let a: Cco{E)-^ C°(F) be an operator of order k with 
infective {resp. surjective) symbol. Suppose the elliptic operator a* a {resp. aa*) 
satisfies the hypotheses of Theorem 3.12 for p > 1 and s > n/p + 2k. Then for 
2k < t < s {and if a has surjective symbol s — k > t > n{\/p — 1/2) + k)9 

we have 

Wp^~k{F) - a{Wp^) 0ker(a*). 

Furthermore, the range of a is closed in Wp,t~k. 

PROOF. We first consider the case where the symbol of a is injective. 
Using Lemma 2.2 we need only show that ker(a*a) = ker(a) and 

Rng(a*a) = Rng(a) for the chain 
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Let us assume ƒ E ker(a*a). Then using Theorem 3.7 we have a(f) E Ck. 
Thus we have 

(7) 0 = f <ƒ, a*af)E dp= f (af af)F dfi. 

Hence «(ƒ) = 0. Thus ker(a*a) c ker(a). Clearly ker(a) c ker(a*a). 
Also, it is clear that Rng(a*a) c Rng(a*). So assume ƒ = a*(g) for g E 

Wp,t~k. Using Theorem 3.1 we may write ƒ = a*a(h) + j where a*a(J) = 0. 
Then j E Wp,s and from the above reasoning a(J) = 0. Hence 

ƒ (jJ)dfJi = ƒ 0 , ƒ - a*a(A)>rfM = f<J, «*(*)> " f<J> «*aA>rfM 

(8) M 

= ƒ <«(A >̂̂ M " J<**«(J), *>rf/i = 0 - 0 = 0. 

Now suppose a has surjective symbol. In this case aa* is elliptic. Again we 
only need verify that ker(a*a) = ker(a) and Rng(a*a) = Rng(a*). Since a*a 
is not elliptic we may not apply the regularity estimate. However since 
/ - k > n(\/p - 1/2) we know WPtt'k C L2 (see Palais [25]) and so the 
integration by parts argument used above to show ker(a*a) = ker(a) is valid. 

Now suppose w E WpJ~lk and w = a*(v) where v E Wp,t~k. Since / — k 
< s — 2k we may apply Theorem 3.12 to where K = aa*(«) + h where 
u E Wp,t+k and aa*(h) = 0. Then w = a*a(a*h) + a*(h). Hence we are 
finished if a*(h) = 0. However we may apply the integration by parts 
argument again (in fact a*(h) is continuous) to show 

(9) 0 = f(aa*(h), h}dfjL = ƒ<«*(*), a*(h))dfi. 

Q.E.D. 
It is interesting to note that Theorem 3.12 is really a special case of 

Theorem 3.13. Elliptic operators have injective symbol and surjective symbol. 
However Theorem 3.12 does seem to require separate proof. 

There are some differences between operators with injective symbol and 
elliptic operators. An example is found in the following theorem. 

THEOREM 3.14 (BOURGUIGNON-EBIN-MARSDEN). Let a be a differential 
operator with symbol that is injective but not surjective. Then ker(a*) n Wp,s is 
infinite dimensional. Also the cokernel is infinite dimensional. 

A proof of this may be found in [5], 
Thus in the elliptic case, ker(a*) is infinite dimensional. 

4. Decomposition of tensor fields over compact manifolds. In this section we 
present some straightforward applications of the previous results. We will 
restrict ourselves to tensor fields defined over compact manifolds. Some 
discussion of the noncompact case will be given in the later sections. 

THEOREM 4.1 (HELMHOLTZ DECOMPOSITION). Let p > l, s > n/p + 2 and g 

a Riemannian metric of class Wp,s. Then for 1 < t < s 

(10) Wp't~\TM) = grad( Wp*') 0 ker(div). 
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PROOF. This follows immediately from Theorem 3.13, noting that the 
symbol of grad is injective and the grad* = div, and the coefficients of grad 
are coordinates of the metric. Q.E.D. 

REMARK. In the case p = 2 and the metric is C °° a proof of this is possible 
without the use of the Fredholm alternative. 

The above result may be extended to the more general Hodge decomposi
tion. Let A* be the bundle of alternating &-forms. The exterior derivative is a 
first order differential operator d: C°°(Ak)-+ C°°(Ak+l). If a G Lp(Ak) and 
/3 G Lp'(Ak), \/p + l/p' = 1, we may define (a, f3) = fM a A * ft d\x where 
A is the wedge product and * is the Hodge-star operator (see [28]). In this 
way we may identify Lp(Ak) with the dual of Lp(Ak). In this case we prove 
Theorem 4.1 directly from the fundamental lemma and the regularity theo
rem. First let s = 1; using divg: Hl —» L2 and gradg: H

2 —> Hl, we need show 
(1) ker(A^) = ker(gradg) and (2) Ag(H

2) = divg(H
 l). Condition (1) follows 

immediately from the regularity theorem and integration by parts (or alter
nately the maximum principle). We get that ker(Ag) = ker(gradg) = (constant 
functions). To show (2), note if ƒ = div^(w) G L2 then the total integral of ƒ 

vanishes by the divergence theorem. Thus ƒ is orthogonal to the constants 
which form the null space of A*( = Ag) in L2. Thus using a standard result of 
Hubert space theory ƒ = Agu. The case s > 1 follows using regularity. 

With this identification we have the codifferential 8: C0C(Ak) -» Cco(Ak~l) 
defined so that 8 = d*. Thus (da, /3) = (a, 8/3). Since d2 = 0, we have 
82 = 0. The Laplace-Beltrami operator is defined as A = d8 + 8d. Also note 
dA = Ad and 8A = A8. 

THEOREM 4.2 (HODGE DECOMPOSITION). Letp > 1 and s > 0. Then 

Wp^{Ak) = d(Wp>s+\Ak+l)) 0 «(H^+^A*- 1 ) ) 0ker(A) 

where the summands are closed, and ker(A) is finite dimensional. 

PROOF. First recall some standard facts about A. It is elliptic, selfadjoint, 
and has smooth coefficients. Also if A/ = 0 then since ƒ G C°° we find 

(</ƒ, df) = (&/ƒ,ƒ) = - (d8f,f) = - («ƒ, «ƒ). 

Thus both (df, df) = 0 and (8f, 8f) = 0. In fact df = 8f = 0. 
It follows from Theorem 3.11 that Wp*(Ak) = A(Wp>s+2(Ak)) 0 ker(A). 

Clearly, if ƒ G A(Wp>s+2(Ak)) then ƒ may be written as ƒ = da + 8p and so 
we may write 

Wp*(Ak) = d(Wp>s+\Ak-1)) + 8(Wp>s+l(Ak+l)) + ker(A). 

We need to show the sum is direct. Suppose ƒ = da + 8/3 and A/ = 0. Then 
since df = 8f = 0 we have 8da = 0 and d8/3 = 0. Also, using (da, 8/3) = 0 we 
have 

(ƒ, ƒ) = (da, da) + (80, 8/3) = (a, 8df3) + (/?, d8/3) = 0 

and so ƒ = 0. Now if ƒ = da = 80 then df = 0 and 0/ = 0. Thus A/ = 0 and 
the decomposition is established. 
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It remains to show the summands are closed. To this end note that 
ker(d) = d(Wp>s+l(Ak~1)) 0 ker(A). For suppose ƒ = dg + j where A/ = 0. 
Then df = dj. Now dùj = dôdj = 0. Thus if y is C00 we may calculate that 

0 = (rf&jf, dj) = (&0, &jf) 

and so 8dj = 0. It follows 0 = (Sdj, j) = (dj, dj). Thus dj = 0 and we have 
df=dj = 0. This shows rf( W ^ A * - 1 ) ) 0 ker(A) c ker(rf). 

Now let ƒ E ker(t/). We know ƒ = dc^ + 8<x2 + /* where A(/i) = 0. We need 
only that 8a2 = 0. We have df = döa2

 = 0 an<^ s o 

0 = (d8a2, a2) = (8a2, 8a2) 

and hence 8a2 = 0. 
Since ker(d) is closed and so is a Banach space and ker(A) is closed in 

ker(d) then an application of Lemma 2.1 tells us the range of d is closed. 
The fact that the range of 8 is closed follows immediately from one more 

application of Lemma 2.1. Q.E.D. 

EXAMPLE. The canonical decomposition of symmetric 2-tensors (Berger and 
Ebin [4]). 

Let (Af, g) be a compact Riemannian manifold. Let S2 be the bundle of 
symmetric two tensors. Then for X G WP,S(TM) let K(X) = Lxg where X is 
the Lie derivative. This is a first order differential symbol. In coordinates 
Kg(X)tj = Xiy + XJ{i. Thus the symbol o^K): TpM -* S2 is given by 
(V\ . . . , V") -» (§ F + ^.K''). Now setting i = y then £K' = 0 (no summa
tion) for all choices of V*. Thus if £y ^ 0 we must have F7 = 0. Also then 
£yK' = 0 for i = 1, . . . , n; thus (V\ . . . , Vn) = 0 and the symbol is injec-
tive. 

The formal adjoint of K is computed by 

(11) f(Kg(X)> S)dix = -faXdivg(S)dii 

where divg(5')/ = Sfj. Then we have the following theorem. 

THEOREM 4.3. Let p > \,s > n/p + 2 and g a metric of class Wp>s. Then we 
have the following decomposition: 

WP>S(S2) = Kg(W
p>s+\TM)) ©ker(divg) 

vv/^re ^ e range of Kg is closed. 

PROOF. This is an immediate application of Theorem 3.12. One need only 
do a coordinate calculation to check the required smoothness of the coeffi
cients of Kg. Q.E.D. 

This example is a special case of a general class of decompositions that 
arise in theoretical mechanics [3]. 

We give two more applications of Theorem 3.13. 

PROPOSITION 4.4. Let (M, g) be a C°° Riemannian manifold and f G 
C°°(M, R); then there is a x e C°°(TM) such that divg x = f iff fM f dixg = 0. 
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PROOF. Let/? > 1. Then ƒ G W1*'5 for any s. We may write (since divg has 
surjective symbol) 

Wp* = divg(W
p>s+l) 0 ker(gradg). 

Thus ƒ is a member of the range of divg iff ƒ is L2 orthogonal to the kernel of 
gradg, i.e. the constants. Thus if ƒ ƒ d/xg = 0 we may write ƒ = divg x where 
X G Wp>s+l for any s. Hence x ^ C00. Q.E.D. 

PROPOSITION 4.5. Let (M, g) be a C°° Riemannian manifold. Let x^ 
C°°(TM). Then x = divg(S') where S is a bilinear symmetric 2-tensor iff 
fM(X, h)g d[xfor all killing fields h on M (i.e. h G k e r ^ ) ) . 

PROOF. This is proven similarly as the previous Proposition 4.4 using the 
decomposition 

(12) Wps(TM) = divg(S
p>s+l) 0 kerg(#g). Q.E.D. 

5. Weighted Sobolev spaces over Rn. Research over the last few years has 
shown that an appropriate setting for studying homogeneous elliptic opera
tors on R" are the weighted Sobolev spaces Mp

ô defined below. These spaces 
were suggested by inequalities found in a paper by Nirenberg and Walker 
[24]. They were first defined and applied by the author [6-12]. More recently 
R. McOwen [23], R. Lockhardt [20] and Christodoulou and Choquet-Bruhat 
[13] have extended the previous known results and helped clarify the previous 
work. Also, the use of Mp

d spaces for the study of hyperbolic operators has 
begun (see [14]). 

DEFINITION 5.1. Let s G N, 1 < p < oo and 8 G R, and a(x) = (1 + 

W2)1 /2 

| « | < 5 

where | \p is the standard LP norm on Rw. 
The completion of C0°°(R

n, Rm) with respect to | \PtStô is called Mp
s(R

n, Rm). 

As is customary we will denote Mp
s(R

n, Rm) by Mp
ô when there is no 

danger of confusion. 
In order to get a feeling for some of the technical results to follow note that 

oa(x) = (1 + x2)"/2 belongs to Mp
8 if and only if a < -(n/p + Ô). Thus, for 

example, if -n/p < ô < -n/p + 1 then Mp
ô includes o~l but not o° == 1. 

Also we may include linear functions in Mp
d by letting ô < -n/p — 1, etc. 

The next theorem (following a series of useful lemmas) shows that if 
s > n/p the above reasoning has a partial converse. That is, if ƒ G Mp

8 for 
s > n/p, then at infinity ƒ = o(oa) for a < -(n/p + 3). 

LEMMA 5.1. For ô G R and a a multi-index we have 

(!) o < l i m l ^ M < o o , 
1*1-» \xf~\«\ 

(2) 0<limJÇ^M<«, 
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This is proven by direct calculation. 

LEMMA 5.2. For any p > 1, s E N and 8, / E R the map f*-*fol is a 
continuous map from M£s into M^8__j, 

PROOF. We will show in general that there is a C > 0 such that 

(13) IVU-/ < Cl/U-
It suffices to show if /3 is a multi-index and | /? | = s, then 

O4) \D"(f-o')os-'+X<C\f\p^. 

To show this we write 

(15) ^(/-a')= 2 (lWz>'-V. 

Thus using Lemma 5.1 we find 

(16) 

\DP{f-ol)oô-l+s\p < c 2 | />V~*+ ,V-'+ ' | , 
Y</3 

< C 2 |/> V+ h r l | , < C\f\^. Q.E.D. 
IYI<J 

The next lemma is a Sobolev type inequality. 

LEMMA 5.3. Let s > n/p and 8 < n/p. There is a constant C > 0 such that 
for all f (EC™ 

ll/*ôll < c|/Uo. 

PROOF. Let ƒ E C0°°. Then for any x0 E R" and 0 E S*""1 = {>> E Rw: 
|j>| = 1} we have 

(17) f(x0)a
s(x0) = - | o J | ( / . o « ( x 0 + t f ) ) < & . 

Integrate by parts (5 — 1) times to get 

(18) 

f(x0)a
s(x0) -JtpLf~jL(f. a«(x + tf)),*-i ^ 

Thus 

(19) 

|/(*oK(*o)l < C, ƒ °° ± Jo /=o 

<#(x0 + te) 
dt' 

d'-'a 
dt* T(x0 + te) I"'1 dt. 
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Now integrate both sides over Sn~l to get 

(20) *n-l\ÀX(ùAxJ\ 
JS-U8 

<c,j j"i 
dv * 5-U+«) ts-ntn-\ dtdS 

VP' 

dtS 

where wn_l is the (n - l)-volume of Sn~l. After dividing by wn_l and 
applying Lemma 5.1 we conclude 

(21) |/(*0)<A*o)l < C2 ( t \D'f(y)\ \os+l-*(y)\ \y - xJ-dV(y) 
JR" 1 = 0 

where Dlf(y) is the total /th derivative. Thus using Holder's inequality if 
\/p + \/p' = 1 we have 

(22) \f(x0)o
s(x0)\ <C2t(( \D'fo'\" dv)l/" 

Thus we need to check that the second integral in each summand con
verges. This requires first that the singularity at x0 is well behaved. This 
requires 

(23) (s - n)p/p - 1 + n > 0. 

This is equivalent to s > n/p. 
Second, we must check the growth at infinity. By checking limits at infinity 

we may treat o as \y\, \x0 - y\ as \y\, and oô~s(y) as |y\6~s. Thus the integral 
converges at infinity iff 

(24) ((8 - s) + (s - n))p' + n < 0. 

That is, 

(25) (8 - n)p/ (p - 1) + n < 0. 

This is equivalent to 8 < n/p. Thus \f(x0)o
6(x0)\ < C\f\PfSt0. Since this holds 

for all x0 G Rn the lemma is proved. Q.E.D. 

THEOREM 5.4. Let p > 1, s > n/p and 8 G R. Then if ƒ G M£ô ara/ /? < 
«//? + 8 we have lim^_^00\f(x)o^(x)\ = 0. 

PROOF. Let ^ b e a C ° ° function satisfying 

0, |JC| < R, 

<*> '* - 11, M > 2Ü. 

Also we may assume |Z)a^(x)| < CajR~** for some Ca. 
CLAIM. If g G M£0 then Hm^^^l^g^ j 0 = 0. To see this note that by using 

total derivatives f or a < s 

(27) \D"(eRg)o\ < C 2 iD'gfD-^Kl, 

There are two cases to consider. 
1 = 0 
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Case (1). / = a. In this case we check for each x9 

(28) \D«g(x)0R(x)o«(x)\P < \D«go«{x)\? 

and so by the dominated convergence theorem \imR_^oo\D
ag0R(x)oa(x)\p = 0. 

Case (2). I < a. In this case the support of Da~l0R is contained in 
{R < \x\ < 2R) and so using the estimate on H Z ) 0 - ^ ! and Lemma 5.1 we 
have 

\\(Da-l0R)oa-l\\ < CRl-"(2R)a~l. 

Hence there is a constant C such that 

(29) \Dlg(x)D°-l0R(x)o"(xW < \\Da-l0Roa-lr\Dlg{x)ol{x)Y 

< C\Dlg(x)ol{x)\r. 

Thus we may again use the dominated convergence theorem to conclude 
\imR^\D'gD«->0Ro«\p = 0. 

The claim now follows. 
Now set g = foô. Then from Lemma 5.2 g G M£0. Now we have, using 

Lemma 5.3, for all y < n/p and R > 0, 

(30) lim \g{x)o^x)\ = lim \9Rg(x)o^x)\ < lim C\9Rg\p^. 

Note I^Rgl^o *s independent of \x\ and so we have for all R 

0 < lim \g(x)oy(x)\ <C\0Rg\p>SfO. 

Using the claim and letting R -^ oo we find limj;c|_^00|g(x)aY(x)| = 0. Thus 
limw_> J f(x)o8+y(x)\ = 0 and set /? = 8 + y to finish the proof. Q.E.D. 

Let us give some examples of applications of the previous theorem. 

EXAMPLE 1. Let n = 3 and/? = 2 and s > 3/2. Then for ƒ G M5
2
ô we know 

limw_> J / « | = 0 if Ô > - 3 / 2 . 

EXAMPLE 2. Let/? > 1 and ƒ G Af£0 for 5 > n/p. Then limw^J/(.x;)a5(.x;)| 
= 0 for 8 < n/p. If we wish that f(x) "fall off like" o2~n at infinity (this is 
important for the study of second-order operators) then we wish 
lim^i^^l f(x)os(x)\ = 0 for all 8 < n — 2. This requires n/p < n — 2 or 
equivalently p > n/n — 2. Thus ƒ G M£0 falls like o2~n if s > «//? and 
/? > « / « — 2. 

If sY > n/p and ^ < sx it is easy to show that pointwise multiplication 
induces a continuous map from M^dx X Af£Ô2 into M£ôi+Ô2 However one 
can in fact do better. Consider the case where 8X = 82 = 0 and sx = s2. In the 
presence of this much smoothness one might expect that for ƒ G M£0, ƒ

2 falls 
off faster than ƒ. Also if 8 > -n/p then if ƒ G M£ô, ƒ approaches zero at 
infinity (Theorem 5.4). Thus one might expect that M%8 is closed under 
multiplication if s > n/p and 8 > -n/p. Both of these expectations are 
justified as is shown below. This phenomenon (for/? = 2) was first established 
by Choquet-Bruhat and Christodoulou [13]. The proofs given here were found 
independently by the author. 
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LEMMA 5.5. Let p > 1, sx, s2 be such that sx + s2 > n/p. Then pointwise 
multiplication induces a continuous map from M*d X M*B-± M^s +ô + a 

where a < n/p. 

PROOF. Using Lemma 5.2, it is sufficient to show this theorem when 
8X = 82 = 0. Let 

( . Pi = Oi + s2)p/s29 p2 = (sx + s2)p/sx, 

h = s\a/ Oi + ^2), h = s2<*/ Oi + ^2)-

Note 1//?! + l />2 = 1/p and tx + *2 = a. Then for ƒ. G M£0, i = 1, 2, we 
have 

(32) i/,-/2<a <|/.^"U|/2^,2U-
Now for / = 1,2 we have 

(33) |/a«U < C|Z>*(/,a% 

where \/pi = 1/^. - s,./« (see [25]). 
Repeated use of the product rule and the fact that \Dpol\ < Ca / _ / 3 where C 

depends on /? and / yields 

\fi°% < c £ |/>y,o*-«+*U < c £ |(/>y,«><<-*|ft 
Y=0 y = 0 

(34) 
< C 2 |Z )ya^ | a ' ' ^ | r , 

where 

(35) \/qt = \/p + \/r. 

Combining the inequalities we find 

(36) |/, • f2o\ < q/, |P , ̂ U . o ^ U . o K ' ^ h X | a ' ^ | r r 

We need show rt > 0 and |o''~ ,r'|r < 00. 
Now 

(37) 

\/rx = \/px + sx/n - \/p 

= s2/ (sx + 52)/? + sx/n - \/p = sx(\/n - 1/ (s, + s2)p) > 0 

since (^ + s2)p > n. 
Using the same reasoning on r2 we conclude 

(38) rt = (sx + s2)np/si((sx + J2)/J - n). 

We need only show (/, - s^)rt + n < 0. That is 

(39) {tt - s^{sx + s2)np/Si{{s + j > - /1) + n < 0. 

This is equivalent to 

(40) (/, - *,)(*! + *2)/> + J/((Ji + J2)/> " 1) < 0. 
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This reduces to checking 

(41) tj) - n < 0. 

But, by construction tt < a < n/p. Q.E.D. 

THEOREM 5.6. Let p > 1 and s > n/p and 0 < t < s. Then pointwise multi
plication induces a continuous map from Mp

ô X Mfs -> Mfs +s +a where 
a < n/p. 

PROOF. It is sufficient to show that for |/?| < /, (ƒ, g)-+ D^if- g) is a 
continuous map into Mp

Si+s +a+j8. However 

(42) / > ' ( ƒ • * ) - S (^fD^y{g) 

and Dyf G Mf_y%ôi + y9 Dfi~y(g) e Mf_fi+y^ft_y. And so the result follows 
by the previous lemma (since s — y + (t — fi + y) = s + t — fi > s > n/p). 
Q.E.D. 

COROLLARY 5.7. If s > n/p and 8 > -n/p then M£d is a continuous ring 
under pointwise addition and multiplication. 

PROOF. If follows from the previous lemma setting 8^ = 82 = 8. Then we 
have that multiplication is continuous into M^2d+a. We need 28 + a > 8. 
This requires -8 < a < n/p. Q.E.D. 

We do not use the following theorem, but do include it for completeness. 

THEOREM 5.8. Let p > 1, then if sx > s2 and 8X > 82 then M£ôi is embedded 
compactly in M^. 

This is found in [20]. 

THEOREM 5.9. Let p > 1, s G N and 8 G R; then M£s is a reflexive Banach 
space. 

The proof of this is routine. 

6. Elliptic operators on weighted Sobolev spaces. We now turn to the 
properties of elliptic operators as maps between M*8 spaces. We are chiefly 
concerned with the sort of operators that arise in the proof of decomposition 
theorems. It turns out that in many cases these operators are homogeneous at 
infinity. Let us consider an example. 

Suppose we wish to find a Banach space X of vector fields on R3 with the 
property that it splits into gradient fields and divergent free fields. In order to 
apply Lemma 2.2 we need to find Banach spaces Sx and S2 such that grad: 
Sx -> X, and div: X -» S2 with the property that for A: Sx -» S2, ker(A) = 
ker(grad) and Rng(A) = Rng(div). 

A natural choice of spaces S1? X, and S2 would seem to be Sobolev spaces 
Wp,s+\ Wp,s and wp,s~x respectively. However for every choice of/? and s it 
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is not the case that Rng(A) = Rng(div). To see this let us work in spherical 
coordinates (r, 0), 0 G Sn~l. Then we have for any Ô G R that 

(43) div(a«) = - J ^ 3 - 1 ( 1 + r^2 = ( " " 1 ) g < + | a * - 2 ( 2 , ) . 
rn-\ dr 7 r 2 v ' 

On the other hand if Aw = div(a5) then dw/dr = a8. Thus we know 
w(r, 0) = /ï(l + ^2)ô/2 A + CQ. 

Assuming 8 < 0, 8 ¥= -1 an easy application of Lemma 5.1 yields positive 
numbers Cl and C2 such that 

C rd+l rô+l 

(44) _ L _ < w ( , ) , ) < c 2 Ï T T . 

(If w -> 0 as r -> oo then C = 0.) If 8 + 1 > 0 then clearly w & Lp and we 
are done. If 8 + 1 < 0, then |w(r, 0)| > C2rô + 1 / |ô + 1|. Now let -1 - n/p 
< 8 < -n/p + 1. Then it is easy to check that div(aô) G W** for all s and 
w g Lp. 

Now given p, for what range of 8 would one expect A: Mp
8 -> Mp_28+2

 t o 

be an isomorphism? First of all ô must be sufficiently large so as to preclude 
constants in Mp

8. As we have seen in the previous section, one needs 
8 > -n/p. On the other hand, 8 must not be too large. Since C0°° c ^ff-2,5+2 
we know Mp

8 must contain the inverse image of C0°° under the Laplacian. 
Since Cn\x\2±n (Cn = irn/22n/T(n/2 - 1)) is the fundamental solution for A, 
one can show if A/ G C0°° and ƒ e Mp

8 then 

(45) A*) = C[ g(y) -dV. 
R» |JC - j>|""~2 

At infinity ƒ " behaves like" |JC|2_/I and so 8 must not be so large to disallow 
such functions. Thus one must have a2""" G Mp

8. This requires 8 < -2 + 
n(\ - \/p). 

Heuristically then, one would expect A: Mp
8 -> Mp_28+2 to be an isomor

phism for -n/p < 8 < -2 + n{\ - \/p). This is in fact the case. We will 
generalize this result to operators which are homogeneous at infinity. 

DEFINITION 6.1. Let A be a linear differential operator. We say A is 
asymptotically homogeneous of degree (p, s, 8) if there exists a homogeneous 
differential operator A ̂  with constant coefficients such that when A — A w is 
considered as a map between M£fi(|.x| > R, Rk) -> Mp_28+2(\x\ > R, Rk) 
with operator norm \\A - AJ\PfSAR we have l i m ^ J I ^ - AJ\p>sAR = 0. 

DEFINITION 6.2. Given/?, s, n, and m, we say 8 is exceptional if 8 + w//? or 
8 + m — n(\ — \/p) belongs to the positive integers. 

Recall A* is the formal adjoint of A. 

THEOREM 6.3. Let p > 1, and A = 2|a |<yn 0aZ)a be a uniformly elliptic mth 
order operator. Suppose s > m and each aa is locally of class Wp's\a\, Sk > n/p 
— m + \a\ + 1 and that for 8 not exceptional we have A is asymptotically 
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homogeneous of degree (p> s, 8). Then as a map from M£8(R
n'k) -» 

(1) A has finite-dimensional kernel and closed range. 
(2) The range of A equals {ƒ E Mf_m>ô+m: ƒ ƒ • hdV - 0 for all h e 

Mg'_(ô+m)such that A*(h) = 0}. 

PROOF. We break the proof into several steps. 
Step 1. This theorem holds for A^. This is done for A^ = Aw in some 

detail in [22], As is remarked there the reasoning in that paper extends 
without difficulty to general elliptic homogeneous operators with constant 
coefficients. 

Step 2. A has finite-dimensional kernel. It follows from Step 1 that we may 
write Mf6 = ker(̂ 4 00) 0 W and that there is a CA > 0 such that for every 
ƒ G W 

\f\p,s,Ô ^ ^A\^oof\pts-m,6 + m' 

CLAIM. ker(^4) n Wis finite dimensional. 
To establish this claim we show if {f) is a sequence in ker(,4) n W with 

\fi\P,s,6 = 1 t n e n fi n a s a convergent subsequence. (This proof is a modifica
tion of Theorem 4.1 of [24].) Let <pk be a C00 function such that \<pk\ < 1 and 
<pk(x) = 1 for |JC| < k and cpk(x) = 0 for |*| > 2#. For any w e ker(,4) n W 
we have 

\U\p,s,ô < ^MooWU,-m,ô + m 
(46) 

Also 

(47) M«»(9*«)l„ — m,ô + m 

Now cpRu has compact support in {x: \x\ < 2iÊ}, and in fact there is a 
constant depending only on R9 CR, such that 

(48) \<PRU\P,S,Ô < CR\u\p,s 

where | \ps is the Sobolev norm on W'"5^/?)- Now, using Theorem 3.6 we 
find 

(49) l<P*"L,a < C(\Au\p>s_m + \u\pt0). 

Applying this inequality to f we find 

(50) IvJ^s < C\f,\pfi. 

We now may apply the Rellich Compactness Theorem (Theorem 3.1) to 
{f]} as a bounded sequence in WP'\B2R). So by passing to a subsequence we 
may assume {ƒ} converges in LP(B2R). Substituting f —f. into the above 
inequality we find {<pRf} is Cauchy in Mp

ô. Thus {AJ^jJ^} is Cauchy in 
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The second term in the inequality is handled as follows. 

+ |(1 ~ <P*Moo« - A^l - <pR)u\PfS_mtô+m 

< | 0 - <PR){AOOU ~ Au)\p,s-m,ô + m 

+ | 0 - <P*Moo" - AM ~ <P*)"|/»,j-iM + m 

(51) < Moo - ^ ) ( l - f t H ^ + J11 

+ | 0 ~ «PilX^oo" ~ ^ W ) ~ (^oo " A)(l ~ ^ ) " U - m , 8 + m 

+ | 0 - <PR)AOOU ~ ^ooO ~ ^ H / M - f M + m 

< ll^oo - ^ | U , A J l | ( l " <PR)u\p>sj 

+ | • • • \p,s-m,6 + m • I • • • |/>,j —iff,â + m* 

Now there is a constant M such that for R 
(52) 

-m,ô + m)' 

Substituting (52) into inequality (51) we get 

(53) 

l^ooO - <P«)"U-m,«+m < M o o - A\\P,S,8,R(MC)\A<*>(1 ~ V * ) « U - « . « + m 
+ M C 'Moo(<P/JM)U-m,« + m + | • • • |/M-m,S + m 

+ | • • • \p,s — m,8 + m-

Pick # sufficiently large so that MCWA^ - A\\p>sAR < 1. Then after sub
traction and division one obtains for each ƒ 

M o o ( 0 - <PR)fi)\pts — m,ô + m -m,ô+m) 

(54) +1(1 - çfcX^ - ^W - ( ^ - ,4)0 - ^ M U - ^ ^ 

+ |(1 ~ <PR)Aoofi - ^ooO - %)//U,-m,« + m-

We already know {A^tp^} is Cauchy. 
Each of the sequences 

(55) { ( 1 " 9 j , ) ( ^ - ~ A)fi ~ {A" ~ A){X ~ V J , W J ' 
{(\-<P*)A„ft-Aj\-<pR)fl} 

consists of functions with compact support and are bounded in Wp,s+l. (The 
highest terms cancel.) Hence we may apply the Rellich theorem twice more to 
conclude that after passing to a subsequence { ^ ( ( l — <?/?)ƒ)} is Cauchy in 
Mfd. Hence ft is Cauchy in ker(^4) n W which is closed. Thus the subse
quence {ji} converges and we have established the claim. 
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Now ker(A) c ker(^l) n W 0 ker(^4) n k e r ^ ^ ) and so is finite dimen
sional. 

Step 3. A has closed range. 
First write Mp

s = ker(^) 0 (ker(^00)^ker(^)) 0 W. The first two sum-
mands are finite dimensional and so W is closed. Let {ev . . . , er] span 
( k e r ^ ^ ^ k e r ^ ) ) . Note that {A(ex\ . . . , A(er)} are linearly independent 
(and sp(A(el)f . . . , A(er)) is linearly independent from A(W)). We may 
express Ms

p_mô+m as s p ^ ^ ) , . . . , A{er)) 0 Y where A(W) c Y. 
We shall show that f(W) is closed in M/_w ô + m . Supposing this is true it 

follows that f(M£d) is closed. To see this note 

A(M*9) = A(sp(el9...9e,)®W). 

Let l i m ^ A{^x ayej + wt) = u = 2 *,ƒ(*,) + 7 = 2 cfa) + w. We 
may put an equivalent norm | | on Mp_md+m by setting |2 fy/^/) + y\A

 = 

max(|ft,|, b U , _ m , ô + J . Then , 4 ( 2 ^ ! ̂  + w,) -> w => ^ -* 6, for each y = 
1, . . . , r. Thus ,4(2;»! ayej) -» 2 *//(*/)• J t follows immediately that /(w,.) -> 

y. But if ^4(w) is closed, then y = ^4(vv), w E W and we are done. Thus we 
need to show 

CLAIM. A(W) is closed in M/_m ô + m . 
As in the proof of Theorem 3.9 we need only show there is a C > 0 such 

that for a l l / G W, 

(56) 1/U,ô < c^/U5_m,ô+m. 

Suppose no such C exists. Then there is a sequence {ƒ•} c W such that 
I ƒ/!/>** * ! a n d l4//l^-m,*+m - * ° - A s i n t h e P r o o f o f t h e previous step we 
know there is a CA > 0 such that for any ƒ G Wx 

(57) \f\PiS,d < C4 |^00/ | / , ) ,_m)8+m . 

We proceed as in the previous step. 

— m,8 + m — m,ô + m 

(58) < CA\{AX - A)<pRf\PtS_miS+m 

+ \(Aco - A)(-<PR)f\p,s-m,S + m + \Aj \p,s-m,ô + m' 

There is a Cx > 0 such that for all R 

(59) 10^ - ^ WU_m ,ô+„, < CJ/1„ < C(\Af\PtS_m + |/1,) 

where as before | | M is the norm on Wp,k(B1R). Note that \Af\PtS__m-*0 and 
that {ƒ} is bounded in WPfS(B2R). Hence the compactness argument used 
before tells us that by passing to a subsequence we may conclude {(A^ — 
A)<pRfi) is Cauchy in Mp_m>ô+m. 

We also have 

(60) '^°° ~ A<"X " V*^U*-*M + m <|Moo ~ A\\PfSAR\{\ ~ <pR)f\PyStS 

<M\\A„-A\\M\f\PtStd. 

Substituting this inequality back into inequality (58), we find by choosing R 
sufficiently large that 
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-m,8+m)' 

By assumption {Af} is Cauchy in Mf_md±m and so {ƒ•} is Cauchy in Af/5. 
Hence/, -> ƒ G M£. But | / | ^ a - 1 and | k / | ^ 8 = 0. Thus ƒ G ker(^) n W 
and ƒ 7̂= 0. This is impossible and our inequality is established. 

Step 4 {Regularity), There is a C > 0 such that for all ƒ G M£5 

(62) \f\P,s,S < C(|4/U,_m,ô + m + \f\P,s-m,ö)-

This is proven using the same techniques found in the previous steps. That 
the inequality holds for A ̂  is found in [22]. 

Step 5. Completion of the proof. 
Since A has closed range and M*8 is reflexive we use the same argument as 

found in proof of Theorem 3.11. Note that making the usual identifications 
we may set (Mgô)* to be Mfi'^ where \/p + \/p' = 1. 

Now let s>m. If ƒ G A(Mfd) c (M£ 6) it is clear that / G { g G 
^7-m.«+«: * * - 0 for A G M^: A*(h) = 0}. Now suppose/ G Mf_m>ô+W 

and ƒ ƒ • A dV = 0. Then we know ƒ = >l(w) for some u G M£ô. However we 
see from Step 4 that in fact u G M£ô. Q.E.D. 

REMARK. It is shown in [22] that even for the Laplacian Theorem 6.3 fails 
when 8 is exceptional. 

It should also be remarked that this theorem may be proven using topologi
cal methods based on Theorem 5.8. This approach is used in [20, 22]. 

Let us give an application of the preceding theorem. This shows our 
heuristic reasoning is correct. 

PROPOSITION 6.4 (MCOWEN). Let p > 1, s > 2 and 8 not exceptional. Then 
A: M?d -> Mf__2ô+2 is one-one iff -n/p < 8 and onto iff 8 < -2 + 
n(l - \/p). 

PROOF. Suppose 8 > -n/p, f G Mfa and A/ = 0. It follows from the 
regularity estimate (Step 4 of the above proof) that ƒ G M*d for all s, and so ƒ 
is C°°. It follows from Theorem 5.4 that/(x) -» 0 as \x\ -» oo. It follows from 
the maximum principle that ƒ = 0. If 8 < -n/p then 1 G M£ô and so A is not 
one-one. 

It follows from Theorem 6.3 that A is onto iff {ƒ G Af^a+2): A(/) = 0} is 
trivial (\/p + \/p' = 1). From the above discussion this is equivalent to 
-(8 + 2) > -n/p', i.e. 8 < -2 + n/p'. Q.E.D. 

COROLLARY 6.5. If p > 1, s > 2, and -n/p < 8 < -2 + n(\ - \/p\ then 
A: Mf8 -> M/_2,a+2 is an isomorphism. 

Let us consider the Laplacian in more detail. Suppose g is C°° and 
g = 0(\x\-') on R3 for t > 3. Then g G Mfo for p > -3/p + t. Let -3/p < 
8 < -2 + 3(1 - 1//?). Note Mftfi c M^s+2 and so we may find a solution to 
A/ = g with ƒ G M/+2 8. Thus in general we may conclude ƒ = ö(|x|a) for 
a > -3/p — 8 > - 1 . The question does arise: When may we conclude 
ƒ = 0(|.x;|-'+2)? In this case g G A(M/+2/8_2) and so we must have ƒ ƒ • WK = 
0 for all h G Mg^,, such that A(/i) = 0. If h G Mfl'^, and A(/i) = 0 by 
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regularity h G M*_p for all s. Thus we may conclude h = 0(|x|Y) for y > 
-3/p' + / ? > / - 3. Say t = k + 3. Then h may be a harmonic polynomial 
of degree k. In this way we recover the classical result that if A/ = 0(1*1""') 
then ƒ = 0(\x\2~') iff ƒ j§^ = 0 for all harmonic polynomials /?* of degree 
k = / - 3. 

Actually the above discussion is not so remarkable. The sort of reasoning 
given was used by McOwen in his proof of Step 1 of Theorem 6.3 (see [22]). 

There are various conditions on A which guarantee that the operator is 
asymptotically homogeneous of degree (p, s, 8). One straightforward crite
rion is the following. 

PROPOSITION 6.6. Let A = S,a,<w aaty
a. Suppose aa G Cs~~m(Rn, R"). There 

is an operator A ̂  = S| a | .m âatf)
a with aa constant such that for \y\ < s — m 

(1) limsup|Z)Yaaam- | a | + M| = 0 for \a\ < m, 
|x|-*oo 

(2) lim sup\Dy(aa(x) - âa)a^\ = 0 for \a\ = m. 
| * | - > o o 

Then A is asymptotically homogeneous of degree (/?, s, 8) for any 8. 

Most applications require weaker hypotheses on the coefficients of A. The 
following proposition is more useful. 

PROPOSITION 6.7. Let A = 2 | a | < w aaD
a and A^ = 2 w » m âaD

a, with âa 

constant such that if B — A — A^ = 2 baD
a, then ba G Mfj with ta > n/p 

+ \a\ — m and la > m — \a\ — n/p. Then A is asymptotically homogeneous of 
degree (p, s, 8) for any ô GR. 

PROOF. Let 

(63) l /U ,* = ( f 2 \D«fo*+M\Pdv)l/P. 
\J\x\>R\a\<s I 

Now, 

(64) \(A - Ajf\p^mtS+m,R < 2 \baD"f\Pi,_mJS+mJt. 
\a\<m 

Also 

\KDaf U- m , s + m = 2 \Dy(baD«f)\p^s+m+ïylR 
<s — m 

2 ^ (1)\D\D^y-%^+m+hlR. 
<s~m /3<y V r ' 

(65) lyl<S~m 

< 

By assumption Da+^ *f G M/+1/8 |_ |y |_ | a |>ô+w + |Y,_|i8| and D \ G 
M^_^/a+i8.Thus using Theorem 5.6 (noting the theorem works over spaces of 
functions over exteriors of spheres) we get 

( 6 6 ) \D\D"-y-%Am+M+SiR 

< C\D\\p,a_lpya+lfilR\Da+y-Pf\pj+\0\_M_wls+M+M_l/}lR 
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if 
(1) ta - |j8| + (s + |j3| - \y\ - |a|) > n/p and 
(2) l2 + | l | + (fi + |a| + |y| " | j8|)m + |y| + 8 - n/p. 

Now (1) is equivalent to ta > n/p + y + \a\ — s. But by assumption ta > 
n/p + \a\ — m and |y| < s — m. Hence (1) holds. 

Again by assumption la > m — \a\ — n/p which implies (2). Thus we have 

(67) \(A - Ajf\PiS_mj+m,R < C 2 \hW,ia,R\f\P,sAR 
\a\<m 

and so 

(68) \\A - Ax\\p<sAR < C S \K\PM-
\a\<m 

But 

i i m I^U,/a,* = °- Q-ED-
7. Decomposition of tensor fields over asymptotically Euclidean manifolds. 

That the results of the previous section extend to manifolds with more than 
one "infinity" is rather easy to see. In fact, after some technical material is 
given the proofs of the previous section go through with little modification. 

The interest in such manifolds stems chiefly from their application in 
general relativity. They are a natural setting for «-body problems. 

DEFINITION 7.1. A «-manifold S is said to have ends if the complement of a 
compact set 7V~0 in S may be written as the disjoint union M - N0 = 
U Jl ! Nj where each TV,, 1 < / < «, is diffeomorphic under <p, to the comple
ment of a unit sphere in Rn. Each Nt for 1 < / < m is called an end. 

DEFINITION 7.2. A Riemannian manifold (S, g) is called asymptotically 
Euclidean of degree (p, s, ô) if on each end there is a coordinate system such 
that with respect to these coordinates gtj — 80 E A/£5. The coordinates are 
called straightening. 

The metric g can be used to give a coordinate free definition of M£S(S). 
Let < , } x be the inner product on TXM induced by g. For Vx E TXM, 

\Vx\x
 = V<^c, yx\ - Al s o denote the canonical volume form on S by iig. 

The geodesic distance from x to y is d(x, y). 

PROPOSITION 7.3. Let (S, g) be asymptotically Euclidean of degree (/?, s, 8) 
with s > n/p + 1 and 8 > -n/p. Then on each end, if t < s, the Mf^ norm of 
any section with respect to straightening coordinates is equivalent to the intrinsic 
norm 

(69) s (ƒ \m)ô^\pAl/P 

where o(x) = (1 + d(x, x0)
2)l/f2 for some x0 E Nf. 

PROOF. Recall that locally jug = \/det gtj dxl . . . dxn. Since \/det g(j is 
continuous, everywhere positive and approaches 1 at each infinity, we know, 

file:///K/pM-
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given some system of straightening coordinates, there exists constants 
Cv C2 > 0 such that 0 < Cx <^detgtJ(x) < C2 < 0 for all x E S. The 
result then follows easily from coordinate formulas for Va and Theorem 5.6. 
Bounds for ö/o are obtained using comparison theorems. By assumption 
the Christoffel symbols are Holder continuous. Q.E.D. 

The definitions and results of the previous two sections extend in a natural 
way to asymptotically Eulcidean manifolds. In fact we have the following 
theorem. 

THEOREM 7.4. Let (S, g) be an asymptotically Euclidean manifold of degree 
(/?, t, (3) where t > n/p + 1 and fi > -n/p. Also let s < t and A be an mth 
order uniformly elliptic differential operator between sections of tensor bundles E 
and F over S. Suppose further that with respect to straightening coordinates A 
may be written as A = y2aaD

a with aa locally in Wp^a\ s^ > nip — m + |a| 
+ 1. Then if on each end A is asymptotically homogeneous of degree (p, s, 8) 
with s < t and 8 not exceptional, we have for A: M?8{E) —> M^_mô+m(F) that 

(1) A has finite-dimensional kernel and closed range. 
(2) The range of A equals {ƒ G M^__m8+m: fs<fh>Fiig=OforallhŒ 

M0,-<ô + m) SUCh that A*(h>> = °} ' 

PROOF. The proof of this theorem is a straightforward modification of the 
proof of Theorem 6.3. Simply pick q>Rj9 i = 1, m, to be a C°° function whose 
support is contained in JV,.. Also let each cpRi be bounded by 1, <pRti(x) — 1 if 
|<P/(JC)| > R. Let <p0R = 1 - S^Li <PR,i- Using <piR for i = 0,. . . , m in the 
place of <pR and (1 - <pR) the proof of Theorem 6.3 extends to this case. 
Q.E.D. 

REMARK. This proof uses the fact that the tensor bundles inherit asymptoti
cally Euclidean norms from TS. One could define an asymptotically 
Euclidean bundle and generalize the above results. 

We now give some applications of Theorem 7.4. Recall the Laplacian with 
respect to g, Ag is locally given by 

S ( V * ) ~ , £ ( V * * £ ) where* = det^ 
PROPOSITION 7.5. Suppose p > 1, t > n/p + 1 and (S, g) is asymptotically 

Euclidean of class (p, t, ft) for /3 > -n/p. Then if -n/p < 8 < -2 + 
n{\ — \/p) and 2 < s < t the Laplacian with respect to g is an isomorphism 
from Mfô to Mf_28+2. 

This is proven similarly to Proposition 6.4 above. 
In what follows Vg and divg are the gradient and divergence operators 

associated with the metric g. In coordinates 

gJ rr ^a*'' 
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and 

diviS K ' ^ ) = - ^ S ^ V d e T ^ g9V). 
*\ dxlJ Vde tg U à* 

Divg is L2 adjoint of Vg using the inner product and volume density 
associated with g. Also Ag = divg ° divg. 

THEOREM 7.6 (HELMHOLTZ DECOMPOSITION). Suppose p > 1 and (S, g) is 
asymptotically Euclidean of class (p, t, ft) for t > s/p + 1, fi > -s/p. Then if 
1 < s < t — 1 and -s/p < 8 < -1 + n(l — l/p) (8 not exceptional), we have 

Mf/TS) =Vg(Mf+l i5_,) 8 ker(divg) 

with the range of Vg closed. Furthermore if s > n/p the decomposition holds for 
-n/p <8 <n(l - \/p). 

PROOF. We need show that Ag = divg ° Vg: Mf+lt8_x -> Mf_lô+1 satisfies 
the hypotheses of Lemma 2.2. 

CLAIM. Ker(Ag) = ker(Vg). 
By restricting our attention to one end at a time we may treat Ag as an 

asymptotically homogeneous operator of degree (p, t, 8) on R". Clearly 
ker(Vg) c ker(Ag). So suppose Agw = 0 and u e Mf+X8_x. Since Agw = 0 
using the regularity estimate in the proof of Theorem 6.3 we see u G M£ô_l 

and so u is locally C1. Also it follows from Theorem 5.1 that |wa^(;c)| —»0 as 
|x| —» oo for all ft < (8 — 1) + n/p. By assumption we may write 8 = — n/p 
+ 3e for some e > 0. Then let /? = -1 + 2e to conclude that \u(x)\ < 
C|a1-"e| for some e > 0. Now let x0 G R". We may without loss of generality 
take x0 = 0. A standard elliptic estimate (see Protter and Weinberger [27]) 
tells us 

(70) \Vu(0)\<§(Mr-mr) 

where Mr = max{u(x): \x\ < r) and mr = min{u(x): \x\ <r). We know 
MR — mr < Crl~e and so | Vw(0)| < Cr~e for all r. Hence as letting r -» oo, we 
have |Vw(0)| = 0. It follows u(x0) = 0 for all x0 G R" and so u is constant. 
Hence Vgu = 0. 

CLAIM. Rng(Ag) = Rng(div). 
Clearly Rng(Ag) c Rng(divg). We need Rng(divg) c Rng(Ag). Suppose 8 < 

-1 + n{\ — l/p). Then using Theorem 7.5 we see Ag maps M£+lô_l onto 
Mf_ ! 5 + ! and we are done. 

Now suppose s > n/p, -1 + «(1 — l/p') < 8 < n{\ — l/p'), and V = 
divg u and u c M£5. For r > 0, f\x\<r divg w dju,g = J w „ r g(w, «) */S where n 
is normal to {|x| = r] with respect to g. Now |/ |x |» r g(w, n) dS\ < 
C,/|JC|.r|tt|f

,,~1 dSe where dS9 is the measure on {\x\ = r) with respect to the 
Euclidean norm. 

Using Theorem 5.6 we have \u(x)o^(x)\ -»0 as |JC| —» oo for ft < 8 + n/p. 
We may write 8 = -1 + n(l — l/p) + 3e for some e > 0. Thus we may take 
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ft = n — 1 4- 2e. Hence \u(x)\ < C\x\l n e f or large | JC|, and so 

(71) f g(u9 n) ds\<c{ rl-n~e • rn~ ldSe < Cr^. 
\J\x\ = r I J\x\-r 

Thus letting r -» oo, we see 

(72) f d i v » dH = 0. 
•'M 

Hence Rng(divg) c {v E M/L l f i+1: ƒ cvd/x = 0 f or c any constant}. Recall 
Rng(Ag) = {v e Af/_lfd+1: /<A,'i>>^ - 0 for h E Af£<a+1), Ag(fc) - 0}. 
Now since 8 + 1 < 1 + n/p', we have -(8 + 1) > -1 - n/p'. Hence using 
the reasoning of the previous claim if h E MJ_(Ö+1) and Ag(/z) = 0, /i is 
constant. Thus Rng(divg) c Rng(Ag). Q.E.D. 

Let us continue with this example. The bounds -n/p < 8 <n/(\ - \/p) 
are sharp for the Helmholtz decomposition to hold. To see this we consider 
the case where M = Rn and g is the Euclidean metric. Suppose 8 < -n/p 
(8 = -n/p is exceptional). Then if L: Rn -» R is linear L E M*f

+Ïô_l. To see 
this note \L(x)\ < C\x\ and so \L(x)od~\x)\p < C\a\x)\p. But 'since 8 < 
- n/p, 8p + n < 0 and so \aô(x)\p < oo. Thus ker(A) c Mf_lt8+l contains 
all the linear functions. On the other hand, ker(Vg) contains only the constants. 

Now suppose 8 > n(l - l/p). Then the range of A equals the range of div. 
Then since A has closed range we know the range of div must be closed. 
Hence its range must be {ƒ E M?_x d+l: ƒ fhdv = 0 for h E Mgl(ô+1), grad h 
= 0}. By assumption -(8 4- 1) < -n/p' — 1. Thus M^_<ô+l) contains linear 
functions. Using the characterization of the range of A, we find Rng(V)_L 

contains only constants, but Rng(A)_L contains linear functions. Thus Rng(A) 
cannot equal Rng(div). 

Thus if 8 < -n/p or 8 > n(l — l/p) one of the necessary conditions of 
Lemma 2.2 is violated. 
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