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BOOK REVIEWS 
Permutation groups and combinatorial structures, by N. L. Biggs and A. T. 

White, London Mathematical Society Lecture Note Series No. 33, Cam­
bridge Univ. Press, New York and London, 1979, viii + 140 pp., $13.95. 

The close relationships between group theory and structural combinatorics 
go back well over a century. Given a combinatorial object, it is natural to 
consider its automorphism group. Conversely, given a group, there may be a 
nice object upon which it acts. If the group is given as a group of permuta­
tions of some set, it is natural to try to regard the elements of that set as the 
points of some structure which can be at least partially visualized. 

For example, in 1861 Mathieu [8], [9] discovered five multiply transitive 
permutation groups. These were constructed as groups of permutations of 11, 
12, 22, 23 or 24 points, by means of detailed calculations. In a little-known 
1931 paper of Carmichael [5], they were first observed to be automorphism 
groups of exquisite finite geometries. This fact was rediscovered soon after­
wards by Witt [11], who provided direct constructions for the groups and then 
the geometries. It is now more customary to construct first the designs, and 
then the groups, using projective planes (as in Lüneburg [7]) or codes (as in 
Cameron [2], or Cameron and van Lint [3]). This change of point of view 
should be compared with the corresponding phenomenon in the case of the 
classical groups: they are now regarded as groups of linear transformations 
acting on a vector space, rather than as groups of matrices to be laboriously 
multiplied, inverted and conjugated. 

In order to see more precisely how groups and combinatorial objects are 
related, consider a finite group G acting transitively on a set X; the elements 
of X will be called "points". Assume for the moment that G is 2-transitive. 
Take any subset B of X such that 2 < \B\ < \X\, and form all the distinct 
images of B by the elements of G. Any two images have the same size. Since 
any pair of points can be moved to any other pair by a suitable element of G, 
the number of images containing a pair is constant. Thus, this is an example 
of a design (or "balanced incomplete block design" in the statistical 
literature): X is its set of points, and the images of B are its "blocks". Designs 
play an important role in combinatorics, even when no group is present. 

Of course, the above construction is much too general to give useful 
information about the group: B was chosen arbitrarily, and need not have 
much to do with the way G acts on X. Careful choices must be made. For 
example, if G is the collineation group of a finite projective space, the most 
natural choices for B are the subspaces of that space. The hindsight provided 
by the determination of all finite simple groups tells us that, if G is any 
2-transitive group other than the alternating or symmetric group on X, then 
very good choices exist for B. However, there is no uniform choice for B 
which is guaranteed to reflect interesting properties of G. 

197 



198 BOOK REVIEWS 

If G is transitive but not 2-transitive on X, there is a more natural 
combinatorial object arising from G than in the 2-transitive case. Let R be 
any orbit of G on I X I other than {(x, x)\x E X). Then R is a relation on 
X, and defines a directed graph. Clearly, G acts transitively on both the 
vertices and edges of this directed graph. There are at least two choices for 
the orbit R, since G is not 2-transitive on X. Moreover, G is primitive on X if 
and only if each such directed graph is connected. However, once again this 
construction is too general: each proper subgroup H of a given group G 
produces a transitive permutation representation of G, which is primitive if 
and only if H is a maximal subgroup. Many groups (such as those of prime 
power order) do not appear to have any interesting permutation representa­
tions. 

Thus, the study of a permutation group by means of designs or graphs 
requires additional hypotheses. Nevertheless, there have been many situations 
in which such hypotheses have arisen naturally, and the resulting combina­
torial outlook has been a valuable asset in the study or characterization of 
especially important types of permutation groups. 

The combinatorial point of view has also been important for construction 
of new and interesting groups - especially of simple ones. One type of 
construction proceeds as follows. Let if be a permutation group on X9 fixing 
some x G X. Assume that H has been chosen carefully, and that a great deal 
is known about the action of H on X. Conceivably, there is a transitive 
extension of H: a group G acting transitively on X such that H is the 
stabilizer of x in G. If H was transitive on X — {x}, then G will be 
2-transitive on X. If H was intransitive on X — {x}9 then G will have to act 
on directed graphs obtained as above. In especially nice (i.e., very carefully 
chosen) situations, a highly structured combinatorial object can be found 
using H and X, having X as its set of points and H as a group of 
automorphisms, such that G has very small index in the group of all 
automorphisms. For example, in one standard construction for the Mathieu 
group M22, the set X — {x} consists of the 21 points of the projective plane 
PG(29 4) over GF(4), while H is the group of collineations arising from 3 x 3 
matrices of determinant 1. Similarly the Higman-Sims simple group arises 
with H = M22 and X — {x} the union of the sets of 22 points and 77 blocks 
of the M22-design. These examples produce a design and a graph, respec­
tively; in each case, the desired simple group has index 2 in the full 
automorphism group. 

The relationships between permutation groups and combinatorics are far 
from one-sided. The most important, highly structured combinatorial objects 
tend to have large automorphism groups. Thus, the study of structural 
combinatorics naturally leads to group theoretic situations. 

The book under review presents a brief introduction to structural combina­
torics and permutation groups. This is the fourth book in the London 
Mathematical Society Lecture Note Series which deals with these subjects at 
approximately the level of a first or second year graduate student. The other 
three are by Cameron [2], Cameron and van Lint [3], and Biggs [1] (the 
present book being intended as a replacement for the last of these). 
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Biggs and White have as their major goal the construction of the Mathieu 
and Higman-Sims simple groups and their associated designs and graph. Far 
from heading directly towards these topics, they carefully build up the 
numerous group theoretic and combinatorial preliminaries. The authors' 
research has dealt primarily with the combinatorial side of the subject matter. 
This has resulted in extremely slow and meticulous handling of groups; but it 
has not prevented the choice of topics from being excellent, whether the 
reader's point of view is combinatorial or algebraic. 

Chapter 1 presents a general discussion of permutation groups, especially 
multiply transitive or at least primitive ones. It is similar to earlier parts of 
Wielandt [10], but more informal. The simplicity of the alternating groups An, 
n > 5, is handled nicely. Chapter 2 is concerned with finite geometries. The 7 
point projective plane is drawn, and its group is defined and shown to be 
simple. The general and special linear groups are defined, and are seen to act 
on projective spaces. The usual simplicity result is proved very slowly, using 
transvections. This links up nicely with the multiply transitive groups portion 
of Chapter 1. Symplectic, orthogonal and unitary groups are briefly defined, 
and simplicity is mentioned. 

Chapter 3 concerns designs. It begins with elementary counting and inci­
dence matrix results, followed by a proof of the Bruck-Chowla-Ryser theo­
rem; few of these general results reappear later. Designs are constructed from 
multiply transitive groups as indicated above. Permutations and calculations 
are provided in order to obtain the existence of the Mathieu group M22; a 
sketch is given for M23 and M24. (The groups Mu and Mn are assumed to be 
known from a very long sequence of highly computational exercises in 
Chapter 1.) The groups M22, M23 and M24 are proved to be simple; the 
simplicity of Ml2 is a starred (i.e., difficult) exercise at the end of another 
sequence of fairly difficult exercises. The beautiful design associated with M22 

is now constructed, and the existence of corresponding designs for the 
remaining Mathieu groups is mentioned. Witt's uniqueness result for the 22 
point design is left to another sequence of exercises. 

It is unfortunate that the existence of the Mathieu groups is obtained in 
such an old-fashioned, computational manner. Of course, computation has 
the advantage of requiring relatively little space if it is mostly left to the 
reader. However, it also masks most of the beautiful properties of the 
associated designs while involving ideas which the reader is unlikely to need 
again. Fortunately, elegant constructions exist which exhibit many remarka­
ble relationships among all five designs and the 21 point projective plane 
PG(2, 4) (Cameron [2]; Limeburg [7]). 

Chapter 4 considers transitive groups which are not 2-transitive. Directed 
graphs are obtained as above. The diameter 2 case (strongly regular graphs) is 
studied in some detail using eigenvalues of adjacency matrices. The culmina­
tion of the first four chapters is the construction of the Higman-Sims graph 
and its associated sporadic simple group HS. This construction requires 
familiarity with permutation groups, projective planes, designs and graphs. It 
is a fitting way to end the main portion of the book. The final chapter 
concerns automorphism groups of maps on surfaces. Frobenius groups and 
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Paley maps are discussed; genus is defined and then computed for symmetri­
cal maps. 

The book is unusually error-free. The only serious mistake occurs in the 
discussion of HS. If A and B are permutation groups on X, and 0 E A", then 
{A, B}0 usually does not coincide with (A0, B0}. This invalidates the 
authors' approach to the simplicity of HS. Since the full automorphism group 
of the 22 point M22-design was never discussed, their determination of the 
order of HS is also incomplete. The reader should refer instead to the paper 
by Higman and Sims [6] or to Lüneburg [7]. 

The presentation involves a very pleasant blend of informal discussions and 
formal proofs. The prerequisites are few: some linear algebra and an under­
graduate-level familiarity with groups. Nevertheless, the book comes reasona­
bly close to recent research, and conveys this fact clearly. 

The book is not quite a text. Exercises mostly come in long sequences 
aimed at a single result, and are frequently difficult. For example, the 
uniqueness of the 22 point M22-design constitutes a page long sequence of 
exercises, a complete mastery of which is, moreover, essential for the entire 
discussion of HS. Nearfields, the 3-dimensional unitary group over GF(3), 
Hadamard matrices, and examples of graphs and designs appear in other 
sequences. One exercise (5.7.6) is a short, starred one, consisting of an 
unreferenced result of Carlitz [4], whose complicated proof involves none of 
the concepts appearing in this book. 

Since the book is in a lecture note series, it is perhaps understandable that 
few references are given. However, as part of the informal manner of 
presentation, many informative remarks are made without any references to 
proofs and little indication of what is easy to prove or what is at the research 
level. Each chapter ends with a very short bibliography. Most assertions can 
be found somewhere within some reference; finding the right page of the 
correct book would not be easy for a student. Fortunately, these assertions do 
not contain errors. (The one unfortunate remark involves what might be 
regarded as a matter of opinion. The statement (p. 49) that the occurrence of 
sporadic simple groups "accounts for much of the continuing interest in finite 
groups" is not correct.) 

An instructor familiar with this area would be able to indicate references, 
point out what is easy and what is difficult, and hence transform the authors' 
remarks into large numbers of exercises. Such guidance would turn this into a 
very useful text. The classification of all finite simple groups will have 
numerous consequences (other than instantaneous ones) for both permutation 
groups and combinatorics - and, undoubtedly, elsewhere in mathematics. 
This prospect should further increase the value of books such as this one. 
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Vector bundles on complex projective spaces, Progress in Mathematics, vol. 3, 
by Christian Okonek, Michael Schneider and Heinz Spindler, Birkhâuser, 
Boston, 1980, vii + 389 pp., $18.00 paperback. 

This book is an introduction to the basic theory and classification of 
holomorphic vector bundles on complex projective spaces. A holomorphic 
vector bundle on a complex manifold M is just what you would expect: It is a 
locally trivial fibre space E over M with fibre C and with transition functions 
which are holomorphic on the base. The dimension r of the fibre is called the 
rank of the bundle. 

Smooth vector bundles (that is, with C00 transition functions) have been 
known for a long time in differential geometry. They can in principle be 
classified by certain characteristic classes (in the case of C-bundles their 
Chern classes) and some homotopy invariants. The study of holomorphic 
vector bundles is more recent, and the classification problem is of an 
essentially different nature because of the extra structure imposed by holo­
morphic functions. Once the topological type of the underlying smooth vector 
bundle has been fixed, one finds in general continuous families of nonisomor-
phic holomorphic bundles. The parameter spaces of these families are called 
moduli spaces. The classification problem thus consists of determining which 
smooth C-bundles carry a holomorphic structure, and then describing the 
moduli space of the possible holomorphic bundles. 

Holomorphic vector bundles on compact Riemann surfaces were studied 
extensively beginning in the 1960's. Then attention turned to higher-dimen­
sional manifolds and in particular, there has been a big spurt of recent 
activity concerning holomorphic vector bundles on complex projective spaces, 
the subject of this book. The extent of this activity can be judged from the 
bibliography of this volume, which contains 138 items, about half of which 
date since 1977. 

Why is this subject suddenly so popular? I see three principal reasons. One 


