AFFINE MANIFOLDS AND SOLVABLE GROUPS

BY D. FRIED, W. GOLDMAN AND M. W. HIRSCH

Let M be a *compact* affine manifold. Thus M has a distinguished atlas whose coordinate changes are locally in Aff(E), the group of affine automorphisms of Euclidean n-space E. Assume M is connected and without boundary.

The universal covering \widetilde{M} of M has an affine immersion D: $\widetilde{M} \to E$ which is unique up to composition with elements of Aff(E). Corresponding to D there is a homomorphism α : $\pi \to Aff(E)$, where π is the group of deck transformations of \widetilde{M} , such that D is equivariant for α . Set $\alpha(\pi) = \Gamma$. Let L: $Aff(E) \to GL(E)$ be the natural map.

THEOREM 1. If Γ is nilpotent the following are equivalent:

- (a) M is complete, i.e. D: $\widetilde{M} \rightarrow E$ is bijective;
- (b) D is surjective;
- (c) no proper affine subspace of E is invariant under Γ ;
- (d) $L(\Gamma)$ is unipotent;
- (e) M has parallel volume, i.e. $L(\Gamma) \subset SL(E)$;
- (f) M is affinely isomorphic to $\Gamma \backslash G$ where G is a connected Lie group with a left-invariant affine structure and $\Gamma \subseteq G$ is a discrete subgroup;
- (g) each de Rham cohomology class of M is represented by a differential form whose components in affine charts are polynomials.

For abelian Γ the equivalence of (a), (d), and (e) is due to J. Smillie. We conjecture that (a), (b), (e), and (g) are equivalent even without nilpotence (if M is orientable). In general (a) \Rightarrow (c) and (e) \Rightarrow (c); but (c) \Rightarrow (a) even for Γ solvable and M three-dimensional.

THEOREM 2. The following are equivalent:

- (i) M is finitely covered by a complete affine nilmanifold M_1 (i.e. conditions (a) through (g) of Theorem 1 hold for M_1);
 - (ii) all eigenvalues of elements of $L(\Gamma)$ have norm 1;
- (iii) M has a Riemannian metric whose coefficients in affine charts are polynomials.
- L. Auslander has conjectured that if M is complete then $\pi = \Gamma = \pi_1(M)$ is virtually solvable (i.e. contains a solvable subgroup of finite index); see [M] for discussion. This conjecture is true in dimension three (see [FG]).

THEOREM 3. If π is virtually solvable and M is complete then (e), (f), (g) of Theorem 1 hold. If $\alpha \colon \pi \to \Gamma$ factors through a virtually polycyclic group of rank $\leq \dim M$ and M has parallel volume, then M is complete. In particular if M is finitely covered by a manifold homeomorphic to a solvmanifold then parallel volume is equivalent to completeness.

We briefly indicate the proof of Theorem 1.

- (a) \Rightarrow (c). This holds for any compact complete M. If $F \subseteq E$ is a Γ -invariant affine subspace then both E/Γ and F/Γ are Eilenberg-Mac Lane spaces of type $K(\pi, 1)$. Since they are compact manifolds their dimensions are equal; thus F = E.
- (e) \Rightarrow (c). This holds for all compact M. The linear holonomy $\rho = L \circ \alpha$: $\pi \longrightarrow GL(E)$ determines a π -module E_{ρ} . Let $u : \pi \longrightarrow E$ send $g \in \pi$ into the translational part of $\alpha(g)$. Then u is a crossed homomorphism whose cohomology class $c_M \in H^1(\pi; E_{\rho})$ depends only on M. The nth exterior power $\Lambda^n c_M \in H^n(\pi; \mathbb{R})$ vanishes if and only if M does not have parallel volume. On the other hand c_M can be expressed in de Rham cohomology of M with coefficients in E twisted by ρ . Suppose $F \subset E$ is Γ -invariant. We may assume F is a linear ρ -invariant subspace. Then c_M comes from $H^1(\pi; F_{\rho})$. If dim $F < n = \dim E$ then $\Lambda^n c_M$ comes from $H^1(\pi; \Lambda^n F) = 0$.

From now on assume Γ is nilpotent.

- (c) \Rightarrow (d). Let $E_U \subseteq E$ be the maximal unipotent submodule. Then $H^0(\pi; E/E_U) = 0$, and nilpotent implies $H^1(\pi; E/E_U) = 0$ (Hirsch [H]). This means some coset of E_U is Γ -invariant.
- (b) \Rightarrow (d). Suppose $E_U \neq E$. Some coset of E_U is Γ -invariant; we may assume E_U is Γ -invariant. There is a unique $L(\Gamma)$ -invariant splitting $E = E_U \oplus F$. Let $M_1 = p(D^{-1}E_U)$ where $p \colon \widetilde{M} \longrightarrow M$ is the projection. Then M_1 is a compact affine manifold with unipotent holonomy, hence complete. Let Y be the vector field on \widetilde{M} which is D-related to the vector field $(x, y) \mapsto (0, y)$ on $E_U \oplus F$. Then Y covers a vector field on M, so Y is completely integrable. Every component of $p^{-1}M_1$ is a repellor for Y. One uses these facts to prove that M is complete; but this implies (c), and hence (d).
- (d) \Rightarrow (a). When $L(\Gamma)$ is unipotent there is a flag $E = E_n \supset \cdots \supset E_0 = \{0\}$ of $L(\Gamma)$ -invariant linear subspaces with $L(\Gamma)$ acting trivially on each E_i/E_{i-1} . There are nested foliations Z_n, \ldots, Z_0 on M covered by foliations \widetilde{Z}_i on \widetilde{M} such that D relates \widetilde{Z}_i to the linear foliation E_i of E whose leaves are cosets of E_i . For each i there is a closed 1-form $\widetilde{\omega}_i$ on \widetilde{Z}_i which vanishes on \widetilde{Z}_{i-1} , related by D to a constant 1-form on E vanishing on E_{i-1} . There are completely integrable vector fields X_i in \widetilde{Z}_i with $\langle X_i, \omega_i \rangle = 1$. Given any $p \in \widetilde{M}$, $x \in E$ one shows that the trajectory of X_n through p meets a point p_1 such that $D(p_1)$ is the leaf of E_{n-1} through x. The trajectory of X_{n-1} through p_1 stays in a leaf of \widetilde{Z}_{n-1} and eventually meets a p_2 such that $D(p_2)$ is the leaf of E_{n-2} through x, etc. In this

way one proves that $D(\widetilde{M})$ contains a path from D(p) to x. Hence D is surjective. Injectivity is proved similarly.

- (e) \Rightarrow (d). If $E_{II} \neq E$ let $F \subseteq E$ be a complementary submodule to E_{II} . One shows that some element of $L(\Gamma)$ expands F, contradicting parallel volume.
 - (a) \Rightarrow (b) and (d) \Rightarrow (e) are obvious.
 - (a) \Rightarrow (f). G is the algebraic hull of Γ in Aff(E).
- (f) \Rightarrow (g). By Nomizu's theorem [N] the cohomology of M is represented by invariant forms on G; these turn out to be polynomial.
- (g) \Rightarrow (e). If $L(\Gamma)$ is not unipotent then one proves there is no polynomial volume form.

REFERENCES

- [F] D. Fried, Polynomials on affine manifolds (to appear).
- [FG] D. Fried and W. Goldman, Three-dimensional affine crystallographic groups (in preparation).
- [FGH] D. Fried, W. Goldman and M. Hirsch, Affine manifolds with nilpotent holonomy (to appear).
 - [G] W. Goldman, Two examples of affine manifolds, Pacific J. Math. (to appear).
- [GH1] W. Goldman and M. Hirsch, Parallel characteristic classes of affine manifolds (in preparation).

 - [GH2] ——, A generalization of Bieberbach's theorem (to appear).
 [GH3] ——, Polynomial forms on affine manifolds (in preparation).
- [H] M. Hirsch, Flat manifolds and the cohomology of groups, Algebraic and Geometric Topology, Lecture Notes in Math., vol. 664, Springer-Verlag, Berlin and New York,
- [M] J. Milnor, On fundamental groups of complete affinely flat manifolds, Adv. in Math. 25 (1977), 178-187.
- [N] K. Nomizu, On the cohomology ring of compact homogeneous spaces of nilpotent Lie groups, Ann. of Math. (2) 59 (1954), 531-538.
 - [S] J. Smillie, Affinely flat manifolds, Doctoral dissertation, Univ. of Chicago, 1977.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SANTA CRUZ, CALIFORNIA 95064

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720