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The Burnside problem for matrix groups was solved by Schur (1911) who 
proved that a finitely generated periodic matrix group over C is finite. This 
was generalized to arbitrary fields by Kaplansky (1965) and to semigroups by 
McNaughton and Zalcstein (1975). The author presents the latter result using 
methods of G. Jacob, and in the opposite direction gives examples of infinite 
sequences without repeats (Morse-Hedlund sequence, though his actual ex­
amples follow J. Leech and F. Dejean). 

The final chapter is devoted to Foata's theory of "rearrangement mon­
oids", which leads to a quick and transparent proof of MacMahon's Master 
Theorem, and there are some illustrations from matching problems. The topic 
is closely related to factorizations in free monoids and bases in free Lie 
algebras, and these connexions are briefly sketched. 

The writing is terse but clear; the many worked illustrations and exercises 
are particularly useful. While the first four chapters form an excellent 
introduction to semigroup theory, the account of language theory that follows 
it is inevitably somewhat biased, being seen from the viewpoint of semi­
groups. This would make it rather hard as a first introduction, but for anyone 
with even a nodding acquaintance of language theory it provides an interest­
ing attempt to present an integrated account of these topics. It is only partly 
successful because the author has perhaps spent a disproportionate amount of 
space on rather recondite properties of languages because they happen to 
involve semigroups. However, this is more than made good by the many 
simplifications, and new applications of semigroup theory. There are one or 
two slips, of logic (isomorphism of composition series is so defined as to be 
nonreflexive), spelling (p. 91 preversed, p. 333 envelopping), a curious confu­
sion of left and right on p. 4 and a definition of generating set which quite 
outdoes Bourbaki (see also the rather bizarre definition of mathematical 
problem, p. 127). But these are trifles which do not in any way detract from a 
highly readable book, which will surely help to kill the myth that there are no 
exciting results in semigroup theory. 
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The representation theory of the symmetric groups, by G. D. James, Lecture 
Notes in Mathematics, Volume 682, Springer-Verlag, Berlin and New York, 
1978, vi + 156 pp. 
Since every finite group G is a subgroup of some symmetric group ©„, 

consisting of all the n\ permutations on n objects, the representations of <&n 
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play an important role in finite group theory. Fundamental work in the 
representation theory of <Bn was pioneered by G. Frobenius and Alfred 
Young. An important book on the subject was written in 1961 by Young's 
student Gilbert de B. Robinson, who also compiled and edited a volume of 
Young's collected works, published in 1978. Gordon James, of Cambridge, 
England, author of the book being reviewed, was an invited speaker at a 
Waterloo, Ontario, "Young Day" conference celebrating Young's work, and 
spoke on the decomposition matrices for modular representations, described 
near the end of his book. 

A finite multiplicative group G is usually represented by mapping its 
elements onto permutations, or linear transformations of a vector space M 
over a field F, or by matrices describing such permutations or transforma­
tions, in such a way that products are mapped into corresponding products. 
The vector space on which G acts is called an FG-module. It is irreducible if 
no proper subspace is invariant under all elements of G, and indecomposable 
if no pair of complementary subspaces are invariant. The trace of a matrix A 
is the sum of its diagonal entries au, and is equal to the trace of any similar 
matrix B~lAB. Hence, in a matrix representation the trace is independent of 
the choice of basis in Af, and is the same for conjugate elements g, and gj~ xgtgj 
of G. For each representation p the set of traces x£ of representative matrices, 
one for each class CK of G, form a class function, written as a vector, and 
called the character xp of p. The value X\ f° r the identity class is the degree of 
p, and the dimension of the module M which affords p. If G is finite and F is 
the complex number field, all values x£ are algebraic integers that are sums of 
X? roots of unity. Then the number of equivalence classes of irreducible 
representations or of irreducible characters xp *s equal to the number of 
conjugacy classes CK of G, and the numbers xS form a square array called the 
character table of G. 

Irreducible representations and conjugacy classes of the symmetric group 
@„ are each labeled by a partition A of n, consisting of a set of nonnegative 
integers A, with sum n. If permutations of @n are represented as products of 
disjoint cycles, the cycle lengths form a partition of n which describes the 
class. For example, the permutation (1)(2)(34)(5678)(9) belongs to the class 
132 • 4 of @9. Each irreducible representation of @„ is labeled by an ordered 
partition A, with Xx > A2 > • • • > \ > 0, displayed by a Young diagram [A], 
that is a left adjusted array of n dots or nodes in r rows, with \ equally 
spaced nodes in row /. If Xj nodes appear in column j , the partitions X and A' 
are called conjugate partitions, and [A], [A'] are associated diagrams. Each 
assignment of the integers 1 to « to distinct nodes of [A] determines a 
A-tableau t. The tableau is standard if the integers increase from right to left 
in rows, and from top to bottom in columns. Surprising, perhaps, is the fact 
that the degree of the representation A is precisely the number of standard 
tableaux for A. The row stabilizer Rt and column stabilizer C, of a tableau t 
are respectively the subgroups of <Bn that leave the integers in the same row, 
or in the same column, of t. The sum p, of the permutations in Rr and the 
sum of the even permutations minus the odd permutations in C„ called K„ are 
elements of the group ring of G that played key roles in the studies by 
Frobenius, Schur, Young, and others, of the representations of @ . 
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After discussing modules, submodules, and the classes of @„, the author 
considers F<Bn-modules Mx for each partition X of n. A tabloid {t} is "a 
tableau with unordered row entries", and the polytabloid associated with t is 
defined by et = {t}Kr The Specht module Sx is the submodule of Mx 

spanned by polytabloids, and is irreducible if char F = 0. The standard 
poly tabloids et furnish a basis for Sx. Young's Rule states that the multiplicity 
of SQ as a composition factor of M£ equals the number of semistandard 
X-tableaux of type /x. These are generalized À-tableaux in which the number i 
appears with multiplicity jtx,, and the numbers are nondecreasing in rows, but 
increasing downward in columns, and such that \ [ > /x under a partial 
ordering of partitions. Calculation of the components of a product [X][ /x] is 
facilitated by an algorithm called the Littlewood-Richardson Rule, which also 
enables one to calculate the composition factors of any ordinary representa­
tion of a Young subgroup, induced up to @„. 

The degree of the irreducible representation [\], which is the dimension of 
the Specht module Sx, is given by the simple "hook formula" n\/Hx

9 where 
Hx = Uijhx

J9 and hx. is the length 1 + ( \ - J) + (Aj - /) of the (/,y)-hook in 
the diagram [X]. Also etptKt = Hxer if F = Q. Calculation of single entries in 
the character table can be done efficiently by extracting from the diagram by 
the Murnaghan-Nakayama Rule certain hooks that correspond to cycles in 
the permutation. The character xX vanishes on all permutations whose order 
is divisible by a prime/? if no hook number hXj is divisible by/?. 

Considerable attention is devoted in the book to the modular representa­
tions of Sn over the /? element field Fp. Defining the g.c.d. of <e,, e,*>, for 
polytabloids et and et+ in S£, to be g*\ and /x' to be the conjugate of a 
/?-regular partition /x, it is proved that 5M is reducible if and only if/? divides 
H^/g^. A related criterion for reducibility examines the /?-power diagram 
[ ix]p obtained by replacing each hook number hjj by the exponent vp(hjj) of 
the highest power of /? that divides h ft. R. W. Carter has conjectured, and 
James partially proves, that no column of [ pY contains two different num­
bers if and only if /x is/?-regular and S1* is irreducible over Fp. Decomposition 
matrices for modular representations are discussed in detail, and are tabu­
lated in an appendix for/? = 2 and 3 and n < 13. 

The author feels that the representation theory of Sn should be presented 
without reference to the representing matrices, but he does describe some 
matrices of Young's orthogonal form near the end of the book. Following this 
is a discussion of the close relationship between the irreducible representa­
tions of Sn and those of the general linear group of dimension d, each 
corresponding to a partition A, and acting on a vector space Wx whose 
dimension is the number of semi-standard A-tableaux, with integer entries < 
d, computable by the formula dim Wx = (H(d +j — i))/Hx, where the 
product is over all nodes (/, ƒ) in [X]. 
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