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K,(Z/p*) ANDK,(Z/p[e]) FORp > 5 AND r < 4
BY LEONARD EVENS AND ERIC M. FRIEDLANDER!

If R is a ring, Ky(R) is the Grothendieck group of finitely generated
projective R-modules, K, (R) is the abelianization of the group GL(R) of in-
vertible matrices over R, and K,(R) is the second homology group of E(R) =
ker(GL(R) — K, (R)). Higher K-groups are defined as homotopy groups of a
space associated to GL(R) and provide additional homological invariants of the
linear algebra of R. Unfortunately, these higher (degree greater than 2) K-groups
appear difficult to compute even for very simple rings: in particular, no higher
K-groups of rings with nilpotents have been computed. We present computations
for two such rings, Z/p®Z and Z/p[e] (the dual numbers over Z/p).

Before stating our results, we briefly mention other computations of higher
K-groups. Quillen [9] computed K(F,) for any i > 0 and any finite field F,.
Browder [3], Harris and Segal [6], Quillen [11], and Soule [12] have partial
results on higher K-groups of rings of integers in number fields. Borel [2] has
computed the ranks of the K-groups of such rings. Lee and Szczarba [7] have
computed K3(Z). Moreover, Quillen [10] has proved many general theorems
which enable one to convert known computations of various rings to computa-
tions of related rings.

We announce the following theorems whose proofs will appear in [5].

THEOREM 1. Let p = 5 be a prime. Let Z/p[e] denote the ring (of or-
der p?) of dual numbers over Z/p.

K,(Z/p*)=K,@Z/plel)=Zp-1® Zp,
K,(Z/p*) = K,(Z/p[e]) = 0,
K3(Z/p?) = Z/p* - 1 ® Z/p*; K4(Z/ple]) = Z/p* —1 © Z/p ® Z)p,

K4(Z[p*) = Ko(Z/p[e]) = 0.

Of course, K;(Z/p?) and K, (Z/p[e]) are well known [1, V. 9.1], K, (Z/p?)
was computed by Milnor [8], and K,(Z/p[e]) was computed by van der Kal-
len [13].
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Our proof of Theorem 1 is based on the following homology calculation.

THEOREM 2. Let p =5 be a prime and let SL(p?) = lim SL(n, Z/p?)
and SL(¢) = ler; SL(n, Z/p[e€]).

H,(SL(p*)) = H,(SL(e)) = 0,
Hy(SL(p*)) = H,(SL(e)) = 0,
Hy(SL(p?)) = Z/p® = 1 © Z/p*; Hy(SL(e)) = Z/p* — 1 ® Z/p ® Z/p,

Hy(SL(p*)) = Hy(SL(e)) = 0.

Let R = Z/p*® or Z/p[e]. Then K,(R) = H,(SL(R)) ®R’, K(R) =
ni(BSL(R)"') fori > 1, and H(SL(R)) = Hi(BSL(R)+). Therefore, Theorem 2
and the Hurewicz Theorem imply the computations of K, (R), K, (R), and K3(R)
of Theorem 1. Furthermore, K,(R) is obtained from Theorem 2 using the Serre
spectral sequence for the natural map BSL(R)T — K(K 3(R), 3) and the well-
known values of the Z/p homology of K(K;(R), 3).

The proof of Theorem 2 is achieved by considering SL(n, Z/p?) = SL(n, p*)
and SL(n, Z/pie]) = SL(n, €) as extensions over SL(n, Z/p) = SL(n, p). Be-
cause Quillen determined H4(SL(p), Z) in [9] and because the kernels of
SL(n, p*) — SL(n, p) and SL(n, €) — SL(n, p) are p-groups, the content of
Theorem 2 is its determination of the p-primary component of the asserted ho-
mology groups.

Let H,(G, A4; p) denote the p-primary component of H,(G, 4) for any
group G and G-module 4. We consider the spectral sequence

EZI(p2’ Z) = Hl(GL(nr p)’ H/(Vn)’ p) =>H1+](S—L-(n: pz)’ Z’ p)

where 1 — V,, — SL(n, p*) — GL(n, p) — 1 is the restriction of the exten-
sion 1 — M, — GL(n, %) — GL(n, p) — 1 to the subgroup SL(n, p?) of
GL(n, p*) consisting of matrices whose determinant has order prime to p. We
also consider the analogous spectral sequence {£7 i(e, Z)} for H(SL(n, €), Z; p);
then Egj(pZ, Z)= Ei?j(e, Z). To prove Theorem 2, it suffices to compute
H .(SL(n, p?), Z; p) and H (SL(n, €), Z; p) which is done using these spectral
sequences. To identify H3(§I:(n, p?), Z; p) and H3(§Z(n, €), Z; p) precisely and
not simply their associated graded structures given by these spectral sequences,
we also must consider {£] ].(pz, Z/p)} and {E];(e, Z/p)} (which have isomorphic
E,-terms).

The analysis of these spectral sequences involves the determination of £ 12]
for i + j < 4 and the identification of all relevant differentials. For example,

E§ 3(Z/p*, 2) = Hy(GL(n, p), A°V, ® S*V,) = Z/p ® Z/p,

E} ,(Z/p?, Z) = H,(GL(n, p), A*V,) = Z/p.
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The calculations of Ef] are made by computing the homology groups

Hy(B,, H(V,);p) (= H(B,, H(V})) forj > 0)

where B,, is the subgroup of GL(n, Z/p) of n x n upper triangular matrices. For
>0, Hj(Vn) is considered with a convenient filtration as a B,, module and the
spectral sequence of this filtered module is employed:

Esl,t = Hs+ I(Bn’ Fsl-lj(Vn)/Fs—I}[j(Vn)) = Hs+ I(Bn' 11/(Vn))

The necessary E !-terms of this spectral sequence are computed using the projec-
tion map B,, — B,,_ and induction; the necessary differentials are computed
explicitly.

The only possible nonzero differentials in the spectral sequences {£] j(pz, Z)},
{E] (e, )}, {ET ,.(pz, Z/p)}, and {E] (€, Z/p)} in the range under consideration
are the differentials

2 .2 2
dy i By, — Ep 3.

Because of the stability with respect to n of E22,2 and E§,3, it suffices to consi-
der the case n = 2. FordZ ,: EJ (e, Z) — E{ 3(e, Z) and d3 ,: E3 ,(¢, Z/p)

— E 3’3(6, Z/p), we employ an explicit cocycle calculation for the split exten-
sion

1—V,—SL2,¢) x B,—B,—1.
GL(2,p)

For d} ,: E3 ,(p*, Z) = E§ 3(p*,2) and d ,: EZ ,(p*, Z[p) — E§ 3(*, Z/p),
we use the determination of d%,z in the split case together with the theory of
Charlap and Vasquez [4] to identify these differentials.
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