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Kr(Z/p2) AND Kr(Z/p [e] ) FOR p > 5 AND r < 4 

BY LEONARD EVENS AND ERIC M. FRIEDLANDER1 

If R is a ring, KQ(R) is the Grothendieck group of finitely generated 
projective i?-modules, KX(R) is the abelianization of the group GL(R) of in-
vertible matrices over R, and K2(R) is the second homology group of E(R) = 
kev(GL(R) —> K^R)). Higher .K-groups are defined as homotopy groups of a 
space associated to GL(R) and provide additional homological invariants of the 
linear algebra of R. Unfortunately, these higher (degree greater than 2) ^-groups 
appear difficult to compute even for very simple rings: in particular, no higher 
if-groups of rings with nilpotents have been computed. We present computations 
for two such rings, Z/p2Z and Z/p[e] (the dual numbers over Z/p). 

Before stating our results, we briefly mention other computations of higher 
A"-groups. Quillen [9] computed ^/(F^) for any i > 0 and any finite field F . 
Browder [3], Harris and Segal [6], Quillen [11], and Soule [12] have partial 
results on higher ^-groups of rings of integers in number fields. Borel [2] has 
computed the ranks of the J^-groups of such rings. Lee and Szczarba [7] have 
computed K3(Z). Moreover, Quillen [10] has proved many general theorems 
which enable one to convert known computations of various rings to computa­
tions of related rings. 

We announce the following theorems whose proofs will appear in [5]. 

THEOREM 1. Let p > S be a prime. Let Z/p[e] denote the ring (of or­
der p2) of dual numbers over Z/p. 

Kx(Z/p2) = K^Z/ple]) = Z/p - 1 0 Z/p, 

K2(Z/p2) = K2(Z/p[e]) = 0, 

K3(Z/p2) = Z/p2 - 1 0 Z/p2; K3(Z/p[e]) = Z/p2 - 1 0 Z/p 0 Z/p, 

K4(Z/p2) = K4(Z/p[e]) = 0. 

Of course, Kx(Z/p2) and K^Z/ple]) are well known [1, V. 9.1], K2(Z/p2) 
was computed by Milnor [8], and #2(Z/p[e]) was computed by van der Kal­
len [13]. 
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Our proof of Theorem 1 is based on the following homology calculation. 

THEOREM 2. Let p > 5 be a prime and let SL(p2) = lim SL(n, Z/p2) 
and SL(e) = lim SL(n, Z/p [e] ). ~~* 

H1(SL(p2)) = H1(SL(e)) = 0, 

H2(SL(p2)) = H2(SL(e)) = 0, 

H3(SL{p2)) = Z/p2 - 1 0 Z/p2; H3(SL(e)) = Z/p2 - 1 0 Z/p 0 Z/p, 

H4(SL(p2)) = H4(SL(e)) = 0. 

Let R = Z/p2 or Z/p[e]. Then 7^(7?) = H^SLiR)) 0 fl", #.(/*) = 
iTjiBSLiR)* ) for i > 1, and H^SKR)) = H^BSLiR)*). Therefore, Theorem 2 
and the Hurewicz Tlieorem imply the computations of KX(R), K2(R), and K3(R) 
of Theorem 1. Furthermore, K^(R) is obtained from Theorem 2 using the Serre 
spectral sequence for the natural map BSL(R)+ —> K(K3(R), 3) and the well-
known values of the Z/p homology of K(K3(R), 3). 

The proof of Theorem 2 is achieved by considering SL(n, Z/p2) = SL{n, p2) 
and SL(n, Z/p[e]) = SL(n, e) as extensions over SL(n, Z/p) = SL(n, p). Be­
cause Quillen determined H*(SL(p), Z) in [9] and because the kernels of 
SL(n, p2) —> SL(n, p) and SL(n, e) —> SL{n, p) are p-groups, the content of 
Tlieorem 2 is its determination of the p-primary component of the asserted ho­
mology groups. 

Let H*(G, A; p) denote the p-primary component of H*(G, A) for any 
group G and G-module A. We consider the spectral sequence 

E2j(p2, Z) = Ht(GL(n, p), tf/FJ; p) => Hi+J(SL(nf p2), Z; p) 

where 1 —> Vn —> SL(n, p2) —> GL(n, p) —> 1 is the restriction of the exten­
sion 1 —> Mn —• GL(nf p

2) —> GL(n, p) —• 1 to the subgroup SL(n, p2) of 
GL(nf p

2) consisting of matrices whose determinant has order prime to p. We 
also consider the analogous spectral sequence {E;j(e, Z)} for H*(SL(n, e), Z;p); 
then£ , 2

/(p2 ,Z) = ^2
/(e, Z). To prove Theorem 2, it suffices to compute 

Hr(SL{n, p2) , Z; p) and Hr(SL{ny e), Z; p) which is done using these spectral 
sequences. To identify H3(SL(n, p2), Z; p) and H3(SL(n, e), Z; p) precisely and 
not simply their associated graded structures given by these spectral sequences, 
we also must consider {Er

tj(p
2, Z/p)} and {Er

ifj{e, Z/p)} (which have isomorphic 
E2 -terms). 

The analysis of these spectral sequences involves the determination of E2-
for i + j < 4 and the identification of all relevant differentials. For example, 

E2
>3(Z/p2, Z) = H0(GL(n, p), A3Vn 0 S2Vn) - Z/p 0 Z/p, 

£2
j2(Z/p2 , Z) - #2(GL(/i, p), A2 Vn) = Z/p. 
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The calculations of Ef. are made by computing the homology groups 

H{B„, Hj(Vn); p) (= Ht(Bn, Hj(Vn)) for / > 0) 

where Bn is the subgroup of GL(n, Z/p) of n x n upper triangular matrices. For 
ƒ > 0, Hj{Vn) is considered with a convenient filtration as a Bn module and the 
spectral sequence of this filtered module is employed: 

El, = Bs+t(
Bn> WVJIF^HfYJ) - Hs+t{Bn, Hfyn)). 

The necessary E1 -terms of this spectral sequence are computed using the projec­
tion map Bn —> Bn~\ and induction; the necessary differentials are computed 
explicitly. 

The only possible nonzero differentials in the spectral sequences {£T.(p2, Z)}, 
{Er

tj(e, Z)}, {Er
Uj(p2, Z/p)}, and {E?j(e, Z/p)} in the range under consideration 

are the differentials 

" 2 , 2 * ^ 2 , 2 > ^0,3* 

Because of the stability with respect to n of E\2 and #o,3' ** suffices to consi­
der the case n = 2. For d\2\ £|>2(e, Z) —>£o)3(e, z ) a n d ^2,2: ^f,2(e>Z/W 
—-* ^o,3(e> z /p) , w e employ an explicit cocycle calculation for the split exten­
sion 

1 ~> V2 —> 5X(2, e) x B2~~>B2~+l, 
GL(2,p) 

For tf|f2: Ela(p\ Z) - * ^ 3 ( p 2 , Z) and d|>2 : El2(p
2 ,Z/p)~>El3(p

2 ,Z/p), 
we use the determination of d212

 m t n e S P ^ c a s e together with the theory of 
Charlap and Vasquez [4] to identify these differentials. 
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